QUESTION

(i) Find $\operatorname{gcd}(16169,22747)$.
(ii) Find all the integral solutions, x and y, to the linear Diophantine equation

$$
16169 x+22747 y=69
$$

ANSWER

(i) We use the Euclidean algorithm.

$$
\begin{aligned}
22747 & =1 \times 16169+6578 \\
16169 & =13156+3013=2 \times 6578+3013 \\
6578 & =6026+552=2 \times 3013+552 \\
3013 & =2760+253=5 \times 552+253 \\
552 & =2 \times 253+46 \\
253 & =5 \times 46+23 \\
46 & =2 \times 23
\end{aligned}
$$

so that $\operatorname{gcd}(16169,22747)=23$
(ii) To solve this we must first observe that $69=3 \times 23$ so that there exists an infinite number of solutions. Next we must find one.

From the Euclidean algorithm in (i)

$$
\begin{aligned}
23 & =253-5 \times 46 \\
& =253-5 \times(552-2 \times 253) \\
& =11 \times 253-5 \times 552 \\
& =11 \times(3013-5 \times 552)-5 \times 552 \\
& =11 \times 3013-60 \times 552 \\
& =11 \times 3013-60 \times(6578-2 \times 3013) \\
& =131 \times 3013-60 \times 6578 \\
& =131 \times(16169-2 \times 6578)-60 \times 6578 \\
& =131 \times 16169-322 \times 6578 \\
& =131 \times 16169-322 \times(22747-16169) \\
& =453 \times 16169-322 \times 22747
\end{aligned}
$$

Hence one solution is $x=3 \times 453, y=-3 \times 332$. Therefore the general solution is

$$
x=3+3 \times\left(\frac{22747 n}{23}\right), y=-3 \times 332-3 \times\left(\frac{16169 n}{23}\right)
$$

where n is an arbitrary integer.

