Question

Show that if E is a subset of \mathbf{R} with finite measure, and if the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined by $f(x)=m^{*}(E \cap(-\infty, x))$ then $f(x)$ is continuous. Can you find similar theorems in \mathbf{R}^{2}, or \mathbf{R}^{n} ?

Answer

$x>a \Rightarrow 0 \geq f(x)-f(a)=m^{*}(E \cap(-\infty, x))-m^{*}(E \cap(-\infty, a))$
$\leq m^{*}(E \cap[x, a)) \leq m^{*}([x, a))=x-a$
Similarly $x<a \Rightarrow 0 \leq f(x)-f(a) \leq a-x$
Hence continuity.
\mathbf{R}^{2} by lines.
\mathbf{R}^{3} by planes.

