Question

Prove that the Lebesgue measure of the interval [a, b] is (b - a) [in **R**].

Answer

We shall use open covers by intervals to generate m^* . Let $\{R_i\}$ be an open cover of [a, b]. There is a finite subcover $\{R_1, \dots, R_n\}$ which we may suppose ordered so that $R_i = [a_i, b_i]$ and $a_1 \le a_2 \le \dots \le a_n$, also $a_1 < a$ and $a_n > b$, and so that no interval is entirely contained within another, then $b_i \le b_j$ for i < j, for otherwise $(a_i, b_i) \supseteq (a_j, b_j)$ also $b_i > a_{i+1}$ for otherwise the point $\frac{b_i + a_{i+1}}{2}$ is not covered by the intervals. Therefore $\sum |R_i| = \sum (b_i - a_i)$ $= b_n(-a_n + b_{n-1})(-a_{n-1} + \dots) + b_1 - a_1$ $\ge b_n - a_1 \ge b - a$ Therefore $m^*([a, b]) \ge b - a$ Cover [a, b] by [a, b]