Question

The three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are linearly independent.

(a) What does the equation

$$\mathbf{r} = (1 + 2u - v)\mathbf{a} + (3v - 6u)\mathbf{b} + \mathbf{c}$$

 $u, v \in \mathbf{R}$ represent?

- (b) When $\mathbf{p} = \mathbf{a} + 2\mathbf{c}$, $\mathbf{q} = 2\mathbf{a} \mathbf{b} + 3\mathbf{c}$, $\mathbf{s} = 2\mathbf{b} 3\mathbf{a} 4\mathbf{c}$ are \mathbf{p} , \mathbf{q} , \mathbf{s} linearly independent? If \mathbf{p} , \mathbf{q} , \mathbf{s} are position vectors of the points P, Q, S are P, Q, S colinear?
- (c) Find the point(s) of intersection of the line

$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$
 $t \in \mathbf{R}$

with

- (i) The lines
 - (a) $\mathbf{r} = (2+u)\mathbf{a} + (u-1)\mathbf{b} + (2u+1)\mathbf{c}$ $u \in \mathbf{R}$
 - (b) $\mathbf{r} = (1+u)(2\mathbf{a}+\mathbf{b}) + (3+u)\mathbf{c}$ $u \in \mathbf{R}$
 - (c) $\mathbf{r} = u\mathbf{a} + (u-3)\mathbf{b} + (3-u)\mathbf{c}$ $u \in \mathbf{R}$
- (ii) The planes
 - (a) $\mathbf{r} = \mathbf{a} + u\mathbf{b} + v\mathbf{c}$ $u, v \in \mathbf{R}$
 - (b) $\mathbf{r} = (1+u)\mathbf{a} + (u-2)\mathbf{b} + v\mathbf{c}$ $u, v \in \mathbf{R}$
 - (c) $\mathbf{r} = (1+v)\mathbf{a} + (u-2)\mathbf{b} + (3-v)\mathbf{c}$ $u, v \in \mathbf{R}$

Answer

(a)

$$bfr = (1 + 2u - v)\mathbf{a} + (3v - 6v)\mathbf{b} + \mathbf{c}$$
$$= \mathbf{a} + \mathbf{c} + u(2\mathbf{a} - 6\mathbf{b}) + v(3\mathbf{b} - \mathbf{a})$$
$$= \mathbf{a} + \mathbf{c} + (2u - v)(\mathbf{a} - 3\mathbf{b})$$

This is a line through $\mathbf{a} + \mathbf{c}$ with direction vector $\mathbf{a} - 3\mathbf{b}$

(b)
$$p = a + 2c$$
 $q = 2a - b + 3c$ $s = 2b - 3a - 4c$

$$\alpha \mathbf{p} + \beta \mathbf{q} + \gamma \mathbf{s} = \mathbf{a}(\alpha + 2\beta - 3\gamma) + \mathbf{b}(-\beta + 2\gamma) + \mathbf{c}(2\alpha + 3\beta - 4\gamma) = \mathbf{0}$$

if and only if

$$\begin{array}{rcl} \alpha + 2\beta - 3\gamma & = & 0 \\ -\beta + 2\gamma & = & 0 \\ 2\alpha + 3\beta - 4\gamma & = & 0 \end{array} \right\} \text{ Solution } (-\gamma, 2\gamma, \gamma)$$

So **p**, **q**, **s**, are not linearly independent.

 $\alpha + \beta + \gamma = 2\gamma = 0$ iff $\alpha = \beta = \gamma = 0$. So PQR are not collinear.

(c)
$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$

(in standard form $\mathbf{r} = \mathbf{a} - 2\mathbf{b} + 2\mathbf{c} + t(\mathbf{a} + \mathbf{b} - \mathbf{c})$)

(i) (a)
$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$

 $\mathbf{r} = (2+u)\mathbf{a} + (u-1)\mathbf{b} + (2u+1)\mathbf{c}$
These lines meet where
 $1+t = 2+u$ $t-2 = u-1$ $2-t = 2u+1$
 $t = 1+u$ $t = 1+u$ $t = 1-2u$
So we require $1+u=1+2u$ $v=0$ so $t=1$

Thus the lines meet at $\mathbf{r} = 2\mathbf{a} - \mathbf{b} + \mathbf{c}$

(b) $\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$ $\mathbf{r} = (1+u)(2\mathbf{a} + \mathbf{b}) + (3+u)\mathbf{c}$

These meet where

$$(1+t) = (2+2u) \qquad \underbrace{(t-2) = (1+u)}_{1+u = -3-3u} \underbrace{(2-t) = 3+u}_{2-2, t = 1}$$

which doesn't fit 1st equation.

Therefore the lines do not meet.

(c)
$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$

 $\mathbf{r} = u\mathbf{a} + (u-3)\mathbf{b} + (3-u)\mathbf{c}$
 $u = 1+t$ so the lines are identical.

(ii) (a)
$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$

 $\mathbf{r} = \mathbf{a} + u\mathbf{b} + v\mathbf{c}$
 $1+t=1, \quad t-2=u, \quad 2-t=v$
 $t=0, u=-2, \quad v=2$
So $\mathbf{r} = \mathbf{a} - 2\mathbf{2} + 2\mathbf{c}$ is the point of intersection.

(b)
$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$

 $\mathbf{r} = (1+u)\mathbf{a} + (u-2)\mathbf{b} + v\mathbf{c}$
 $t = u, v = -t + 2$ So the line lies in the plane.

(c)
$$\mathbf{r} = (1+t)\mathbf{a} + (t-2)\mathbf{b} + (2-t)\mathbf{c}$$

 $\mathbf{r} = (1+v)\mathbf{a} + (u-2)\mathbf{b} + (3-v)\mathbf{c}$
 $t = v, t - ut = v - 1$

So the line does not meet the plane. It is parallel to the plane.