Question

(a) The midpoints of consecutive sides of an arbitrary quadrilateral are joined. Show that the figure so formed is a parallelogram.
(b) Show that there is a triangle with sides equal and parallel to the medians of any given triangle.
(c) The points D, E, F divide the sides $A B, B C, C A$, respectively, of the triangle $A B C$ in the ration $m: n$. Show that for any point P in space

$$
\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=\overrightarrow{P D}+\overrightarrow{P E}+\overrightarrow{P F}
$$

Answer

Choose an origin O then:

$$
\begin{aligned}
\overrightarrow{O P} & =\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B}) \\
\overrightarrow{O Q} & =\frac{1}{2}(\overrightarrow{O B}+\overrightarrow{O C}) \\
\overrightarrow{O R} & =\frac{1}{2}(\overrightarrow{O C}+\overrightarrow{O D}) \\
\overrightarrow{O S} & =\frac{1}{2}(\overrightarrow{O D}+\overrightarrow{O A}) \\
\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P} & =\frac{1}{2}(\overrightarrow{O C}-\overrightarrow{O A}) \\
\overrightarrow{S R}=\overrightarrow{O R}-\overrightarrow{O S} & =\frac{1}{2}(\overrightarrow{O C}-\overrightarrow{O A})
\end{aligned}
$$

SO $P Q=R S$ and $P Q$ is parallel to $R S$. So $P Q R S$ is a parallelogram.
(b)

Choose B to be the origin, and let $\overrightarrow{B A}=\mathbf{a} \quad \overrightarrow{B C}=\mathbf{c}$.
Then $\overrightarrow{B P}=\frac{1}{2} \mathbf{a} \quad \overrightarrow{B Q}=\frac{1}{2} \mathbf{c} \quad \overrightarrow{B R}=\frac{1}{2}(\mathbf{a}+\mathbf{c})$

$$
\begin{aligned}
& \overrightarrow{A Q}=\overrightarrow{B Q}-\overrightarrow{B A}=\frac{1}{2}(\mathbf{c}-\mathbf{a}) \\
& \overrightarrow{C P}=\overrightarrow{B P}-\overrightarrow{B C}=\frac{1}{2}(\mathbf{a}-\mathbf{c})
\end{aligned}
$$

Let the point T be defined by $\overrightarrow{B T}=\frac{1}{2}(\overrightarrow{B R}+\overrightarrow{A Q})$

$$
\begin{aligned}
& =\frac{1}{2}(\mathbf{a}+\mathbf{c})+\frac{1}{2} \mathbf{c}-\mathbf{a} \\
& =\mathbf{c}-\frac{1}{2} \mathbf{a}
\end{aligned}
$$

Let the point R be defined by $\overrightarrow{B R}=\overrightarrow{P C}=\mathbf{c}-\frac{1}{2} \mathbf{a}$
So $\overrightarrow{B R}=\overrightarrow{B T}$ and thus $R=T$
So the triangle $B R T$ is as required, since $\overrightarrow{R T}=\overrightarrow{B T}-\overrightarrow{B R}=\overrightarrow{A Q}$ and $\overrightarrow{B T}=\overrightarrow{P C}$.
Note if the medians form a triangle the sum of the vectors represented then should be zer0, and it is.
(c) By the ration theorem:

$$
\begin{aligned}
& \overrightarrow{P D}=\frac{m \overrightarrow{P B}+n \overrightarrow{P A}}{m+n} \\
& \overrightarrow{P E}=\frac{m \overrightarrow{P C}+n \overrightarrow{P B}}{m+n} \\
& \overrightarrow{P F}=\frac{m \overrightarrow{P A}+n \overrightarrow{P C}}{m+n}
\end{aligned}
$$

Adding gives $\overrightarrow{P D}+\overrightarrow{P E}+\overrightarrow{P F}=\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}$

