QUESTION

Obtain at least one solution of the form

$$
y=x^{\sigma} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

for each of the following differential equations. Where possible, obtain a second independent solution of the same form, or comment on why it is not possible to do so.
$2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0$
ANSWER
$2 x(1-x) y^{\prime \prime}+(1-x) y^{\prime}+3 y=0$
$y^{\prime \prime}+\frac{1}{2 x} y^{\prime}+\frac{3}{2 x(1-x)} y=0$ so 0 is a regular singular point. We group terms together that will give the same powers of x :
$2 x y^{\prime \prime}+y^{\prime}-2 x^{2} y^{\prime \prime}-x y^{\prime}+3 y=0$
$\sum_{n=0}^{\infty} a_{n}\left\{[2(\sigma+n)(\sigma+n-1)+(\sigma+n)] x^{\sigma+n-1}\right.$
$\left.+[-2(\sigma+n)(\sigma+n-1)-(\sigma+n)+3] x^{\sigma+n}\right\}=0$
Factorising gives
$\sum_{n=0}^{\infty} a_{n}\left\{(\sigma+n)(2 \sigma+2 n-1) x^{\sigma+n-1}\right.$
$-\left[(2 \sigma+2 n-3)(\sigma+n+1) x^{\sigma+n}\right]=0$
Reordering by powers of x gives
$a_{0} \sigma(2 \sigma-1) x^{\sigma-1}$
$+\sum_{n=0}^{\infty} x^{\sigma+n}\left\{a_{n+1}(\sigma+n+1)(2 \sigma+2 n+1)\right.$
$\left.-(2 \sigma+2 n-3)(\sigma+n+1) a_{n}\right\}=0$
$\sigma(2 \sigma-1)=0 \Rightarrow \sigma=0$ or $\sigma=\frac{1}{2}$
$a_{n+1}=\frac{2 \sigma+2 n-3}{2 \sigma+2 n+1}$
$\sigma=0: a_{n+1}=\frac{2 n-3}{2 n+1} a_{n}$
$a_{n}=\frac{2 n-5}{2 n-1} a_{n-1}=\frac{2 n-5}{2 n-1} \frac{2 n-7}{2 n-3} \frac{2 n-9}{2 n-5} \ldots \frac{-1}{3} \frac{-3}{1} a_{0}$
$\Rightarrow a_{n}=\frac{3}{(2 n-1)(2 n-3)} a_{0}$ after all cancellations.
$\sigma=\frac{1}{2}: \quad a_{n+1}=\frac{2 n-2}{2 n+2} a_{n}=\frac{n-1}{n+1} a_{n}$
$a_{1}=-a_{0}, a_{2}=0, a_{3}=0, \ldots$
General solution is

$$
y=A \sum_{n=0}^{\infty} \frac{1}{(2 n-1)(2 n-3)} x^{n}+B\left(x^{\frac{1}{2}}-x^{\frac{3}{2}}\right)
$$

