QUESTION

Obtain at least one solution of the form

$$
y=x^{\sigma} \sum_{n=0}^{\infty} a_{n} x^{n}
$$

for each of the following differential equations. Where possible, obtain a second independent solution of the same form, or comment on why it is not possible to do so.
$4 x y^{\prime \prime}+2 y^{\prime}+y=0$
ANSWER
$4 x y^{\prime \prime}+2 y+y=0$, or $y^{\prime \prime}+\frac{1}{2 x} y^{\prime}+\frac{1}{4 x} y=0$
$y=0$ is a regular singular point, so we need a Frobenius series:
$y=\sum_{n=0}^{\infty} a_{n} x^{\sigma+n}$.
Substitute:
$\sum_{n=0}^{\infty} a_{n}\left[(\sigma+n)(\sigma+n-1) x^{\sigma+n-2}+\frac{1}{2}(\sigma+n) x^{\sigma+n-2}+\frac{1}{4} x^{\sigma+n-1}\right]=0$
$\sum_{n=0}^{\infty} a_{n}\left[(\sigma+n)\left(\sigma+n-\frac{1}{2}\right) x^{\sigma+n-2}+\frac{1}{4} x^{\sigma+n-1}\right]=0$
Now reorder by powers of x.
Let $n=m+1$ in the first term and $n=m$ in the second.
$\sum_{-1}^{\infty} a_{m+1}(\sigma+m+1)\left(\sigma+m+\frac{1}{2}\right) x^{\sigma+m-1}+\sum_{m=0}^{\infty} \frac{1}{4} a_{m} x^{\sigma+m-1}=0$
$m=-1$ gives us $\sigma\left(\sigma-\frac{1}{2}\right)=0 \Rightarrow \sigma=0$ or $\sigma=\frac{1}{2}$.
$m=0$ gives $a_{m+1}=-\frac{1}{4(\sigma+m+1)\left(\sigma+m+\frac{1}{2}\right)} a_{m}$
Case $\sigma=0: a_{m+1}=-\frac{1}{(2 m+2)(2 m+1)} a_{m}$ The solution is $a_{m}=\frac{(-1)^{m}}{(2 m)!} a_{0}$
Case $\sigma=\frac{1}{2}: \quad a_{m+1}=-\frac{1}{(2 m+3)(2 m+2)} a_{m}, a_{m}=\frac{(-1)^{m}}{(2 m+1)!} a_{0}$
The general solution is obtained by adding the two cases:

$$
y=A \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{n}+B \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{n+\frac{1}{2}}
$$

