Question

Viscous liquid of constant density ρ and constant kinematic viscosity ν is at rest in the region $o \leq y \leq h$ between two rigid parallel plates. There are no body forces. At time $t=0$ the top plate is set into motion parallel to its own plane with speed U in the direction of the x-axis and is maintained at this speed thereafter. The plate at $y=0$ is held fixed and the is no applied pressure gradient. Show that a flow solution of the form $\underline{q}(x, t)=$ ($u(y, t), 0,0)$ is possible provided u satisfies

$$
u_{t}=\nu u_{y y}
$$

and give suitable boundary and initial conditions for this equation.
Using seperation of variables, or otherwise, show that a solution to the governing partial differential equation is

$$
u=C_{1} y+C_{2}+\sum_{n=1}^{\infty} e^{-k_{n}^{2} t}\left(A_{n} \sin \frac{k_{n}}{\sqrt{\nu}} y+B_{n} \cos \frac{k_{n}}{\sqrt{\nu}} y\right)
$$

where $A_{n}, B_{n}, C_{1}, C_{2}$ and k_{n} are constants. By futher imposing the boundary conditions, show that the solution for the flow is given by

$$
u=\frac{U y}{h}+\frac{2 U}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin \left(\frac{n \pi y}{h}\right) \exp \left(-\frac{n^{2} \pi^{2} \nu t}{h^{2}}\right)
$$

Explain briefly what you would expect the flow to look like for a very viscous fluid.
[You may use, without proof, the fact that the Fourier sine series representation of the function ξ for $\xi \in[0,1]$ is given by

$$
\left.\xi=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi \xi) \cdot\right]
$$

Answer

Choose $\underline{q}=((u(y, t)), 0,0)$ then $\operatorname{div}(\underline{q})=0$
Navier-Stokes equations become:

$$
\begin{aligned}
u_{t}+0 & =-p_{x} / \rho+\nu\left(u_{x x}+u_{y y}+u_{z z}\right) \\
0 & =p_{y} / \rho+0 \\
0 & =-p_{z} / \rho+0
\end{aligned}
$$

So since we are told that there are no pressure gradients

$$
u_{t}=\nu u_{y y}
$$

Initial conditions:- $\quad u(y, 0)=0$
Boundary condtions:- $\quad u(h)=0,(t<0), \quad u(h)=U(t \geq 0)$
Also by no slip $\quad u(0)=0$
Now to use seperation of variables, set $u=Y(y) T(t)$.
Then

$$
\begin{aligned}
Y T^{\prime} & =\nu T Y^{\prime \prime} \\
\Rightarrow T^{\prime} / T & =\nu Y^{\prime \prime} / Y
\end{aligned}
$$

By the standard separation of variables argument both sides must be either a constant or zero. Thus either
$\nu Y^{\prime \prime} / Y=0 \quad \Rightarrow Y=C_{1} y+C_{2}, \quad T=$ constant
or
$T^{\prime} / T=-k^{2}$ (choose constant -ve so solutions don't grow at $t=\infty$)
$\begin{aligned} & \Rightarrow T^{\prime}+k^{2} t=0, \quad T=A e^{-k^{2} t} \\ \text { Also } Y^{\prime \prime}+\frac{k^{2}}{\nu} Y=0 & \Rightarrow Y=B \cos \frac{k}{\sqrt{\nu}} y+C \sin \frac{k}{\nu} y .\end{aligned}$

Since the equation is linear, solutions may be added.

$$
\Rightarrow u=C_{1} y+C_{2}+\sum_{n=1}^{\infty} e^{-k_{n}^{2} t}\left(A_{n} \sin \frac{k_{n}}{\sqrt{\nu}} y+B_{n} \cos \frac{k_{n}}{\sqrt{\nu}} y\right)
$$

(the term $n=0$ just gives 0 and constant-see later).
Now we have to impose the boundary conditions:-

$$
u(0)=0 \Rightarrow
$$

$$
C_{2}=0, B_{n}=0 \quad \forall n
$$

Thus

$$
u=C_{1} y+\sum_{n=1}^{\infty} A_{n} e^{-k_{n}^{2} t} \sin \left(\frac{k_{n}}{\sqrt{\nu}} y\right) .
$$

Now the only way to have $u(y)=h \quad \forall t \geq 0$ is to have

$$
\begin{gathered}
c_{1}=\frac{U}{h} \text { and } \\
\sin \left(\frac{k_{n}}{\sqrt{\nu}} h\right)=0, \quad \frac{k_{n} h}{\sqrt{\nu}}=n \pi \quad(n \in \mathbf{Z}) \\
\Rightarrow k_{n}=\sqrt{\nu} n \pi / h \quad(n \in \mathbf{Z}) \\
u=\frac{U y}{h}+\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi y}{h}\right) \exp \left(-\frac{\nu n^{2} \pi^{2}}{h^{2}} r\right)
\end{gathered}
$$

Finally we need $u=0 \quad \forall y$ at $t=0$.
$\Rightarrow 0=\frac{U y}{h}+\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi y}{h}\right)$.
From the result given in the question, for $\in[0, h]$ (set $x=$ fracyh $)$

$$
\begin{gathered}
\frac{y}{h}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin \left(\frac{n \pi y}{h}\right) \\
\Rightarrow A+n=-\frac{u}{n \pi} 2(-1)^{n+1} \\
u=\frac{U y}{h}+\sum_{n=1}^{\infty} \frac{U}{n \pi} 2(-1)^{n} \sin \left(\frac{n \pi y}{h}\right) \exp \left(-\frac{n^{2} \pi^{2} \nu t}{h^{2}}\right)
\end{gathered}
$$

When ν is very large, the exponential terms would be very small for all but the smallest t . Thus for a very viscous fluid we would expect

$$
u \sim \frac{U y}{h} \text { after a very short time. }
$$

