
Question

Viscous liquid of constant density ρ and constant kinematic viscosity ν is at
rest in the region o ≤ y ≤ h between two rigid parallel plates. There are
no body forces. At time t = 0 the top plate is set into motion parallel to
its own plane with speed U in the direction of the x-axis and is maintained
at this speed thereafter. The plate at y = 0 is held fixed and the is no
applied pressure gradient. Show that a flow solution of the form q(x, t) =
(u(y, t), 0, 0) is possible provided u satisfies

ut = νuyy

and give suitable boundary and initial conditions for this equation.
Using seperation of variables, or otherwise, show that a solution to the gov-
erning partial differential equation is

u = C1y + C2 +
∞
∑

n=1

e−k2
n
t

(

An sin
kn√
ν
y +Bn cos

kn√
ν
y

)

where An, Bn, C1, C2 and kn are constants. By futher imposing the boundary
conditions, show that the solution for the flow is given by

u =
Uy

h
+
2U

π

∞
∑

n=1

(−1)n
n

sin
(

nπy

h

)

exp

(

−n2π2νt

h2

)

Explain briefly what you would expect the flow to look like for a very viscous
fluid.
[You may use, without proof, the fact that the Fourier sine series represen-
tation of the function ξ for ξ ∈ [0, 1] is given by

ξ =
∞
∑

n=1

2(−1)n+1

nπ
sin(nπξ).]
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Answer

u
h

y

O

Choose q = ((u(y, t)), 0, 0) then div(q) = 0
Navier-Stokes equations become:

ut + 0 = −px/ρ+ ν(uxx + uyy + uzz)

0 = py/ρ+ 0

0 = −pz/ρ+ 0

So since we are told that there are no pressure gradients

ut = νuyy

Initial conditions:-
Boundary condtions:-

Also by no slip

u(y, 0) = 0
u(h) = 0, (t < 0), u(h) = U (t ≥ 0)
u(0) = 0

Now to use seperation of variables, set u = Y (y)T (t).
Then

Y T ′ = νTY ′′

⇒ T ′/T = νY ′′/Y

By the standard separation of variables argument both sides must be either
a constant or zero. Thus either
νY ′′/Y = 0 ⇒ Y = C1y + C2, T = constant
or
T ′/T = −k2 (choose constant -ve so solutions don’t grow at t =∞)

⇒ T ′ + k2t = 0, T = Ae−k2t

Also Y ′′ +
k2

ν
Y = 0 ⇒ Y = B cos

k√
ν
y + C sin

k

ν
y.
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Since the equation is linear, solutions may be added.

⇒ u = C1y + C2 +
∞
∑

n=1

e−k2
n
t

(

An sin
kn√
ν
y +Bn cos

kn√
ν
y

)

(the term n = 0 just gives 0 and constant-see later).
Now we have to impose the boundary conditions:-
u(0) = 0 ⇒

C2 = 0, Bn = 0 ∀n
Thus

u = C1y +
∞
∑

n=1

Ane
−k2

n
t sin

(

kn√
ν
y

)

.

Now the only way to have u(y) = h ∀t ≥ 0 is to have

c1 =
U

h
and

sin

(

kn√
ν
h

)

= 0,
knh√
ν
= nπ (n ∈ Z)

⇒ kn =
√
νnπ/h (n ∈ Z)

u =
Uy

h
+

∞
∑

n=1

An sin
(

nπy

h

)

exp

(

−νn2π2

h2
r

)

Finally we need u = 0 ∀y at t = 0.

⇒ 0 =
Uy

h
+

∞
∑

n=1

an sin
(

nπy

h

)

.

From the result given in the question, for ∈ [0, h] (set x = fracyh)

y

h
=

∞
∑

n=1

2(−1)n+1

nπ
sin

(

nπy

h

)

⇒ A+ n = − u

nπ
2(−1)n+1

u =
Uy

h
+

∞
∑

n=1

U

nπ
2(−1)n sin

(

nπy

h

)

exp

(

−n2π2νt

h2

)

When ν is very large, the exponential terms would be very small for all but
the smallest t. Thus for a very viscous fluid we would expect

u ∼ Uy

h
after a very short time.
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