Question

(i) Using tensorial notation, or otherwise, prove the vector identities

$$
\begin{gathered}
\nabla \cdot(\phi \underline{a})=\phi \nabla \cdot \underline{a}+(\underline{a} \cdot \nabla) \phi \\
\nabla \times(\nabla \times \underline{a})=-\nabla^{2} \underline{a}+\nabla(\nabla \cdot \underline{a}) \\
\underline{a} \times(\nabla \times \underline{a})=\nabla\left(\underline{a}^{2} / 2\right)-(\underline{a} \cdot \nabla) \underline{a}
\end{gathered}
$$

for a general suitably differentiable scalar function ϕ and vector \underline{a}.
(ii) Explain briefly the major differences between the 'Eulerian' and 'Lagrangian' descriptions of flow. What does it mean to say that a fluid flow is 'steady'? For a fluid flow with velocity \underline{q} define $\underline{\omega}$, the vorticity, and give the condition that the flow is irrotational.
(iii) YOU MAY ASSUME that the Navier-Stokes equations for an unsteady viscous flow are given by

$$
\begin{aligned}
\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{q} & =-\frac{1}{\rho} \nabla \underline{p}+\nu \nabla^{2} \underline{q}+\underline{F} \\
\nabla \cdot \underline{q} & =0
\end{aligned}
$$

where ρ denotes the (constant) density, ν the (constant) kinematic viscosity, p the pressure and \underline{F} the body force. Show that for an inviscid irrotational flow with a conservative body force the quantity

$$
\phi_{t}+\frac{1}{2}|q|^{2}+\chi
$$

is a function of time alone, identifying the quantities ϕ and χ. Show also that for a steady (but not necessarily irrotational) inviscid flow the quantity

$$
\frac{\underline{p}}{\rho}+\frac{1}{2}|\underline{q}|^{2}+\chi
$$

is constant along both streamlines and vortex lines in the flow.

Answer

(i)

$$
\begin{aligned}
& \operatorname{div}(\phi \underline{a})=\frac{\partial}{\partial a_{j}}\left(\phi a_{j}\right)=\frac{\partial \phi}{\partial x_{j}} a_{j}+\phi \frac{\partial a_{j}}{\partial x_{j}} \\
&=(\underline{a} . \nabla) \phi+\phi \operatorname{div}(\underline{a}) \\
& \nabla \times(\nabla \times \underline{a})=\epsilon_{i j k} \frac{\partial}{\partial x_{j}}(\nabla \times \underline{a})_{k}=\epsilon_{i j k} \frac{\partial}{\partial x_{j}} \epsilon_{k p q} \frac{\partial}{\partial x_{p}} a_{q} \\
&=\epsilon_{i j k} \epsilon_{k p q} \frac{\partial^{2} a_{q}}{\partial x_{j} \partial x_{p}}=\epsilon_{k i j} \epsilon_{k p q} \frac{\partial^{2} a_{q}}{\partial x_{j} \partial x_{p}}=\left(\delta_{i p} \delta_{j q}-\delta_{j p} \delta_{i q}\right) \frac{\partial^{2} a_{q}}{\partial x_{j} \partial x_{p}} \\
&=\frac{\partial^{2}}{\partial x_{j} \partial x_{i}}-\frac{\partial^{2} a_{i}}{\partial x_{j} \partial x_{j}}=\nabla(\operatorname{div}(\underline{a}))-\nabla^{2} \underline{a} \\
& \underline{a} \times(\nabla \times \underline{a})=\epsilon i j k a_{j}(\nabla \times \underline{a})_{k}=\epsilon_{i j k} a_{j} \epsilon_{k p q} \frac{\partial a_{q}}{\partial x_{p}} \\
&=\epsilon_{k i j} \epsilon_{k p q} a_{j} \frac{\partial a_{q}}{\partial x_{p}}=\left(\delta_{i p} \delta_{j q}-\delta_{j p} \delta_{i q}\right) a_{j} \frac{\partial a_{q}}{\partial x_{p}} \\
&=a_{j} \frac{\partial a_{j}}{\partial x_{i}}-a_{j} \frac{\partial a_{i}}{\partial x_{j}}=\nabla\left(\frac{1}{2} \underline{a^{2}}\right)-(\underline{a} \nabla) \underline{a}
\end{aligned}
$$

(ii) EULERIAN: We try to find the fluid velocity \underline{q} as a function of \underline{x} and t. Attention is focussed on a particular position in the flow rather than on a particular fluid particle.

LAGRANGIAN: We try to find the fluid motion \underline{x} as a function of \underline{X} and t, where \underline{X} denotes the positions of fluid particles at $t=0$. Attention is focussed on a given fluid particle following the flow.
A flow is STEADY if q does not depend on t.
If a flow has velocity \underline{q} then $\underline{\omega}=\operatorname{curl}(\underline{q})$
For IRROTATIONAL FLOW $\underline{\omega}=0$
(iii) We have

$$
\underline{q}_{t}+(\underline{q} \cdot \nabla) \underline{q}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \underline{q}+\underline{F}, \quad \nabla \cdot \underline{q}=0
$$

For irrotational flow, define $\underline{q}=\nabla \phi$ and for a conservative body force define $\underline{F}=-\nabla \psi$. Then $(\nabla \phi)_{t}+(\underline{q} \cdot \nabla) \underline{q}=-\nabla\left(\frac{p}{\rho}\right)-\nabla \psi$ since the fluid is inviscid and ρ is constant.
$\Rightarrow(\nabla \phi)_{t}+\nabla\left(\frac{\underline{q}^{2}}{2}\right)=\underline{q} \times(\nabla \times \underline{q})+\nabla\left(\frac{p}{\rho}\right)+\nabla(\psi)=0$
But $\nabla \times \underline{q}=0$ so
$\nabla\left(\phi_{t}+\frac{1}{2} \underline{q}^{2}+\frac{p}{\rho}+\psi\right)=0$. The quantity in brackets is independent of x, y and z and thus

$$
\phi_{t}+\frac{1}{2}|\underline{q}|^{2}+\frac{p}{\rho}+\psi=f(t) \text { only }
$$

($\phi=$ velocity potential, $\psi=$ force potential)
For a steady inviscid flow $(\underline{q} . \nabla) \underline{q}=-\nabla(p / \rho)-\nabla \psi$
$\Rightarrow \nabla\left(\underline{q}^{2} / 2\right)-\underline{q} \times(\nabla \times \underline{q})=-\nabla(p / \rho)-\nabla(\psi)$
$\Rightarrow \underline{q} \times \underline{\omega}=\nabla\left(\underline{q}^{2} / 2+p / \rho+\psi\right)$
Thence $\underline{q} \cdot(\underline{q} \times \underline{\omega})=0=(\underline{q} \cdot \nabla)\left(\underline{q}^{2} / 2+p / \rho+\psi\right)$ and so $p / \rho+\frac{1}{2}|\underline{q}|^{2}+\psi$ is constant along streamlines in the flow.
Also $\underline{\omega} \cdot(\underline{q} \times \underline{\omega})=0$ and so
$\underline{q}^{2} / 2+p / \rho+\psi$ is constant along vortex lines in the flow.

