QUESTION

(More difficult) Let $f(z)=\left\{\begin{array}{rr}z^{5} /\left|z^{4}\right|, & z \neq 0, \\ 0, & z=0\end{array}\right.$
and let $g(z)=\frac{f(z)}{z}$. Find $g(z)$ for z on the real axis and also for z on the line $y=x$. Deduce that f is is not differentiable at $z=0$. Now writing $f=u+i v$, where u and v are real, find $u(x, 0), v(x, 0), u(0, y), v(0, y)$ and show that the Cauchy-Riemann equations hold at $z=0$. Comment. ANSWER
If $z \neq 0, g(z)=\frac{f(z)}{z}=\frac{z^{4}}{\left|z^{4}\right|}$. Hence on the real axis $g(z)=1$. On the line $y=x, z=|z| e^{i \pi / 4}$ so $\frac{z^{4}}{\left|z^{4}\right|}=e^{i \pi}=-1$
Now $f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(h)}{h}=\lim _{h \rightarrow 0} g(h)$ which we have shown does not exist as it depends on the direction that we approach 0 . Thus $f(z)$ is not differentiable at $z=0$. Now let $f(z)=u(x, y)+i v(x, y)=(x+i y)^{5} /\left(x^{4}+y^{4}\right)$. Putting $y=0$, we get $u(x, 0)+i v(x, 0)=x$, so $u(x, 0)=x, v(x, 0)=0$. Similarly, $u(0, y)=0, v(0, y)=y$. Thus $u_{x}=v_{y}=1$ and $u_{y}=-v_{x}=0$, and the Cauchy-Riemann equations hold. There is no contradiction as the CauchyRiemann equations do not imply differentiability.

