Question

Let C be a circle in the z-plane having its centre on the real axis, and suppose further that it passes through $z=1$ with $z=-1$ as an interior point. Let C be transformed by the mapping $w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$. Show that this map is not conformal at $z=1$. Expand $f(z)$ locally in the neighbourhood of $z=1$ and deduce that the angles between lines which meet at $z=1$ are doubled. Hence sketch the image of C in the neighbourhood if $w=f(1)$. By picking a few other points and working out their w-images, draw the whole of the transformed C. How does the image of C change if its centre is moved to the upper half plane, but C still passes through $z=1$?
Answer
(z)

PICTURE
$w=f(z)=\frac{1}{2}\left(z+\frac{1}{z}\right) \Rightarrow \frac{d w}{d z}=\frac{1}{2}\left(1-\frac{1}{z^{2}}\right)$
so not conformal at $z= \pm 1$ (or 0).
Hence $z=+1$ is a problem point. We expect the angles of C not to be conserved near the image point $w=f(1)=1$.

We carry out a local analysis:

$$
\begin{aligned}
f(z) & =f(1)+f^{\prime}(1)(z-1)+f^{\prime \prime}(1) \frac{(z-1)^{2}}{2}+\cdots \\
& =1+\frac{f^{\prime \prime}(1)(z-1)^{2}}{2}+\cdots \\
\Rightarrow w-1 & =\frac{(z-1)^{2}}{2}+\cdots
\end{aligned}
$$

Thus if we set $(z-1)=r e^{i \theta}$
$\Rightarrow w-1 \approx \frac{r^{2}}{2} e^{2 i \theta}$, i.e., the angles are doubled.
Now what is the angle of C at $z=1$?
Well it's formed by the tangents of C at 1 :
PICTURE

So, the regular C at $z=1$ is transformed to a 2π cusp at $w=1$. All other points of C transform smoothly since 0 and -1 are not on the curve. By symmetry the new curve is symmetric about the $\operatorname{Re}(w)$ axis: PICTURE

If the centre of C is removed, but we still pass through $z=1$, the cusp remains, but is bent to a more aerofoil shape.

