Question Find a reduction formula for $I_n = \int x^n \exp(-x) dx$ and evaluate I_3 .

Answer $I_n = \int x^n e^{-x} dx$ (**) Integrate by parts to reduce the

Integrate by parts to reduce the power of n.

$$u = x^{n} \qquad \frac{dv}{dx} = e^{-x}$$
$$\frac{du}{dx} = nx^{n-1} \qquad v = -e^{-x}$$

Therefore

 $I_n = -x^n e^{-x} - \int nx^{n-1} x(-e^{-x}) dx$ $I_n = -x^n e^{-x} + n \int x^{n-1} e^{-x} dx$ but this is I_{n-1} by comparison with (**).

Therefore $I_n = -x^n e^{-x} + nI_{n-1}$ is the reduction formula.

Use this reduction formula with n = 3: $I_3 = -x^3 e^{-x} + 3I_2$ $I_2 = -x^2 e^{-x} + 2I_1$ $I_1 = -x e^{-x} + I_0$ What's I_0 ? $I_0 = \int e^{-x} dx = -e^{-x} + c$ where c is an arbitrary constant. Thus recursively substituting $I_1 \rightarrow I_2 \rightarrow I_3$ $I_3 = -x^3 e^{-x} + 3(-x^2 e^{-x} + 2[-x e^{-x} + \{-e^{-x} + c\}])$ PICTURE

$$I_{3} = -e^{-x}x^{3} - 3x^{2}e^{-x} + 6[-xe^{-x} - e^{-x} + c]$$

$$= -e^{-x}x^{3} - 3x^{2}e^{-x} - 6e^{-x} + 6c$$

$$= -e^{-x}[x^{3} + 3x^{2} + 6x + 6] + 6c$$

$$= -e^{-x}[x^{3} + 3x^{2} + 6x + 6] + c'$$

Where c' is a new arbitrary constant.