Question

The function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by

$$
f(x)= \begin{cases}1, & x \geq 0 \\ -1, & x<0\end{cases}
$$

is not continuous at 0 . Give an example of an open set $V \subset \mathbf{R}$ for which $F^{-1}(V)$ is not open, and a closed set $C \subset \mathbf{R}$ for which $F^{-1}(C)$ is not closed. Do likewise for the functions g, h :

$$
g(x)=\left\{\begin{array}{ll}
2 x+3, & x \geq 1 \\
-x+4, & x<1
\end{array} \quad h(x)=\left\{\begin{array}{ll}
\sin \left(\frac{1}{x}\right), & x>0 \\
0, & x \leq 0
\end{array} .\right.\right.
$$

Answer
Let
$V=(0, \infty)$; then $f^{-1}(V)=[0, \infty)$: not open
$C=(-\infty, 0]$; then $f^{-1}(C)=(-\infty, 0)$: not closed.
Let
$V=(4, \infty)$; then $g^{-1}(V)=(-\infty, 0) \cup[1, \infty)$: not open
$C=(-\infty, 4]$; then $g^{-1}(C)=[0,1)$: not closed
Let $V=(4, \infty)$; then $g^{-1}(V)=(-\infty, 1) \cup(1, \infty)$, i.e. $\Re \backslash\{1\}$. Then $h^{-1}(V)$ consists of the positive x-axis with all points $\frac{1}{2 n \pi+\frac{\pi}{2}}, n \in \mathbf{N}$, removed, together with the negative x-axis including 0 . Thus there is no interval $(-\epsilon, \epsilon)(\epsilon>0)$ entirely contained in $h^{-1}(V)$, but $0 \in h^{-1}(V)$.
For C take the complement of V, namely $\{1\}$. Then all points $a_{n}=\left(2 n \pi+\frac{\pi}{2}\right)^{-1}$ lie in C, and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, but $0 \notin C$.

