Question

Decide if these subsets of \mathbb{R}^2 are open, closed or neither:

(i) $\{(x_1, x_2) : |x_1| \le 3\}$ (ii) $\{(x_1, x_2) : |x_1| < 3, x_2 > 5\}$ (iii) $\{(x_1, x_2) : x_1 = 0, x_2 < 0\}$ (iv) $\{(x_1, x_2) : x_1^2 + x_1 x_2^2 > 1\}$. Answer

- (i) Closed: any point x in the complement has $|x_1| > 3$, and then any x' sufficiently close to x (e.g. within δ of x, where $\delta = |x_1| 3$) has $|x_1| > 3$, so the complement is an open set.
- (ii) Open: any x' with $|x x'| < \delta$ will lie in this set if x does and $\delta > 0$ is chosen sufficiently small (depending on x). [How small?]
- (iii) Neither: no point in this set has a δ -nhd contained in the set. Moreover, (0,0) is the complement but no nhd of (0,0) is.
- (iv) Open: no need to plot contours etc just observe that (roughly) if x doesn't change much then nor does $x_1^2 + x_1 x_2^2 \cdots$.

More precisely, let y = x + h: then

$$(y_1^2 + y_1y_2^2) - (x_1^2 + x_1x_2^2) = 2x_1h_1 + h_1^2 + x_1(2x_2h_2 + h_2^2) + h_1(x_2^2 + 2x_2h_2 + h_2^2)$$

and the RHS can be made as small as we please (given x) by taking h small enough. Hence if $x_1^2 + x_1x_2^2 > 1$ then also $y_1^2 + y_1y_2^2 > 1$ for all y with $y \in B_{\delta}(x)$, some $\delta > 0$.

[Remark: This example simply reflects the fact that every polynomial is continuous.]