Decide if these subsets of \mathbf{R}^{2} are open, closed or neither:
(i)
$\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right| \leq 3\right\}$
(iii) $\left\{\left(x_{1}, x_{2}\right): x_{1}=0, x_{2}<0\right\}$
(ii) $\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right|<3, x_{2}>5\right\}$
(iv) $\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{1} x_{2}^{2}>1\right\}$.

Answer
(i) Closed: any point x in the complement has $\left|x_{1}\right|>3$, and then any x^{\prime} sufficiently close to x (e.g. within δ of x, where $\delta=\left|x_{1}\right|-3$) has $\left|x_{1}\right|>3$, so the complement is an open set.
(ii) Open: any x^{\prime} with $\left|x-x^{\prime}\right|<\delta$ will lie in this set if x does and $\delta>0$ is chosen sufficiently small (depending on x). [How small?]
(iii) Neither: no point in this set has a δ-nhd contained in the set. Moreover, $(0,0)$ is the complement but no nhd of $(0,0)$ is.
(iv) Open: no need to plot contours etc - just observe that (roughly) if x doesn't change much then nor does $x_{1}^{2}+x_{1} x_{2}^{2} \cdots$.
More precisely, let $y=x+h$: then

$$
\left(y_{1}^{2}+y_{1} y_{2}^{2}\right)-\left(x_{1}^{2}+x_{1} x_{2}^{2}\right)=2 x_{1} h_{1}+h_{1}^{2}+x_{1}\left(2 x_{2} h_{2}+h_{2}^{2}\right)+h_{1}\left(x_{2}^{2}+2 x_{2} h_{2}+h_{2}^{2}\right)
$$

and the RHS can be made as small as we please (given x) by taking h small enough. Hence if $x_{1}^{2}+x_{1} x_{2}^{2}>1$ then also $y_{1}^{2}+y_{1} y_{2}^{2}>1$ for all y with $y \in B_{\delta}(x)$, some $\delta>0$.
[Remark: This example simply reflects the fact that every polynomial is continuous.]

