REAL ANALYSIS
 CARDINAL NUMBERS

We use $\overline{\bar{S}}$ for the cardinal number of a set S.
I $\overline{\bar{S}} \leq \overline{\bar{T}}$ (or $\overline{\bar{T}} \geq \overline{\bar{S}}$) is to mean " \exists a 1-1 correspondence between S and a subset of T " (not necessarily a proper subset).

II $\overline{\bar{S}}=\overline{\bar{T}}$ is to mean " \exists a 1-1 correspondence between S and T.
$[<$ is to mean \leq but not $=]$
We have that:
(i) The definitions are reasonable when applied to finite sets.
(ii) (a) \leq is transitive, i.e.

$$
\overline{\bar{X}} \leq \overline{\bar{Y}} \overline{\bar{Y}} \leq \overline{\bar{Z}} \Rightarrow \overline{\bar{X}} \leq \overline{\bar{Z}}
$$

(b) $=$ is transitive

$$
\overline{\bar{X}}=\overline{\bar{Y}} \overline{\bar{Y}}=\overline{\bar{Z}} \Rightarrow \overline{\bar{X}}=\overline{\bar{Z}}
$$

$=$ is symmetric

$$
\overline{\bar{S}}=\overline{\bar{T}} \Leftrightarrow \overline{\bar{T}}=\overline{\bar{S}}
$$

$=$ is reflexive $\overline{\bar{S}}=\overline{\bar{S}}$
(iii) (Bernstein's Lemma) $\overline{\bar{S}} \leq \overline{\bar{T}} \overline{\bar{T}} \leq \overline{\bar{S}} \Rightarrow \overline{\bar{S}}=\overline{\bar{T}}$
(iv) For any two sets either $\overline{\bar{S}} \leq \overline{\bar{T}}$ or $\overline{\bar{T}} \leq \overline{\bar{S}}$.

A set S is said to be enumerable (denumerable, countable) $\Leftrightarrow \exists$ a 1-1 correspondence between S and the set of all natural numbers. χ_{0} is called the cardinal number of the set of all natural numbers.

1. If $\overline{\bar{S}} \leq \chi_{0}$ either S is finite or $\overline{\bar{S}}=\chi_{0}$
2. If $\overline{\bar{S}}=\chi_{0} S$ can be put in 1-1 correspondence with proper subset of itself.
3. Any infinite subset contains an enumerable subset.
4. If $\overline{\bar{S}}=\chi_{0}$ and T is infinite then $\overline{\overline{S \cup T}}=\overline{\bar{T}}$.
5. A set is infinite \Leftrightarrow it can be put into 1-1 correspondence with a proper subset of itself.

Proof of A Suppose U and V are such that $\overline{\bar{U}}=\overline{\bar{V}}=\chi_{0}$.
Then $U=u_{1} u_{2} u_{3} \ldots$
$V=v_{1} v_{2} v_{3} \ldots$
$U \cup V=u_{1} v_{2} u_{2} v_{2} \ldots=W=w_{1} w_{2} w_{3} w_{4} \ldots$ therefore $\overline{\overline{U \cup V}}=\chi_{0}$.
We define a 1-1 correspondence between S and T thus T contains a subset $T^{\prime} \mid \overline{\bar{T}}^{\prime}=\chi_{0}$.
We map $S \cup T^{\prime}$ onto $T^{\prime}(1-1)$ and map all the elements of T not in T^{\prime} onto themselves therefore $\overline{\bar{S}} \cup \overline{\bar{T}}=\overline{\bar{T}}$.

I The set of all pairs (m, n) of all natural numbers is enumerable.
Set up the 1-1 correspondence $(m, n) \Leftrightarrow 2^{m} 3^{n}$, for by the theorem of uniqueness of prime factorisation $2^{m_{1}} 3^{n_{1}}=2^{m_{2}} 3^{n_{2}} \Leftrightarrow m_{1}=m_{2} n_{1}=$ n_{2}.
Therefore we have mapped the set onto an infinite subset of the natural numbers which is enumerable.

II $S_{1}, S_{2}, S_{3}, \ldots$ enumerable $\Rightarrow U_{r=1}^{\infty} S_{r}$ enumerable.
$S_{1}=a_{11} a_{12} a_{13} \ldots$
$S_{2}=a_{21} a_{22} a_{23} \ldots$
We assign to $a_{m n}$ the number given by :
$f(m n)$ is a 1-1 correspondence between the set of pairs of natural numbers and the natural numbers. Assign to an element x of $U s_{r}$ the least natural number of $f(m n)$ for which $a_{m n}=x$. Then $U s_{r}$ is enumerable.

III The set of integers h is enumerable.
The set of natural numbers q is enumerable.
The set of all pairs (h, q) is enumerable by (2) $\exists f(h, q)$ mapping the pairs (h, q) in the natural numbers. Now to any rational r assign the least $f(h, q)$ for which $r=\frac{h}{q}$.

IV Suppose $X^{1} X^{2} \ldots X^{n}$ are enumerable sets. Then the set of $\left(x^{(1)} x^{(2)} \ldots x^{(n)}\right.$ where each $x^{(r)}$ runs independently through the elements of X_{r}, is enumerable.
\exists a 1-1 correspondence between the $x^{(r)}$ and the natural numbers U_{u}. We use induction. Suppose true for $n=m$. \exists a 1-1 correspondence between $\left(U_{1} \ldots U_{m} U_{m+1}\right)$ and $\left(V, U_{m+1}\right)$.
This is enumerable by III.
V The result of $I V$ remains true if we have an enumerable system $X^{(1)} X^{(2)} \ldots$ and consider all $\left(x^{(1)} x^{(2)} \ldots x^{(n)}\right)$ with n variables but finite.
We have $S:\left(x^{(1)} x^{(2)} \ldots x^{(n)}\right)$
We have $S_{n}:\left(x^{(1)} x^{(2)} \ldots x^{(n)}, n\right.$ fixed. This is enumerable by IV.
$S=\cup_{r=1}^{\infty} S_{n}$ and is enumerable by II.
VI Consider the set of all polynomials.
$S=b_{0} x^{n}+b_{1} x^{n-1}+\ldots+b_{n}$ where the b_{i} are integers. This set is enumerable by V , but to each $P_{n}(x)$ corresponds at most n algebraic numbers. Hence the set of all algebraic numbers is enumerable.

Example The set of discontinuities of a given monotone function is enumerable.

VII The set of all real numbers is not enumerable.
(i) Consider all real numbers $0<\alpha \leq 1$. Each α has a unique decimal expansion

$$
\left.. x_{1} x_{2} x\right) 3 \ldots
$$

providing we insist that the number of non-zero x 's is not finite. Suppose the set of alpha in $0<\alpha \leq 1$ is enumerable. Enumerate them

$$
\begin{aligned}
\alpha_{1} & +. x_{11} x_{12} x_{13} x_{14} \ldots \\
\alpha_{2} & =. x_{21} x_{22} x_{23} x_{24} \ldots \\
\alpha_{3} & =. x_{31} x_{32} x_{33} x_{34} \ldots
\end{aligned}
$$

Let $\beta=. y_{1} y_{2} y_{3} \ldots 0<\beta \leq 1$ where $y_{r}=1$ if $x_{r r} \neq 1$ and $y_{r}=2$ if $x_{r r}=1$.
This β is not to be found in the sequence $\alpha_{1} \alpha_{2} \ldots \beta \neq \alpha_{n}$ since they differ in the nth place.
(ii) Let $0 \leq \alpha \leq 1$ and suppose that $\alpha_{1} \alpha_{2}$ is an enumeration of this set.

Trisect the interval [01] by 3 closed intervals. At least one does not contain α_{1}. Choose J_{1}, the interval nearest the left not containing α_{1}. $\exists J_{2}$ nearest the left not containing α_{2}. These intervals tend to a limit point $l 0 \leq L \leq 1$. For if $J_{1}=\left[a_{n} b_{n}\right] a_{n} \rightarrow l b_{n} \rightarrow l$ as $n \rightarrow \infty$.
$a_{1} \notin J_{1}, \alpha_{2} \notin J_{2} \ldots J_{1} \supset J_{2} \supset J_{3} \ldots$ therefore
$l \in J_{n}$ for $n=1,2, \ldots$ therefore
$l \neq \alpha_{n} .$.
Contradiction- for $0 \leq l \leq 1$.
VIII For any $a<b$ the points of ($a b$) have the same cardinal number as the points in (0 1) ヨ a 1-1 correspondence between the points of (01) and the points of $(a b)$ given by $0<t<1 t \leftrightarrow a+(b-a) t$.

IX The cardinal number of the set of real numbers is the same as the cardinal number of the set of points (01).
A (1-1) correspondence is $y \leftrightarrow \tanh (x) \quad-\infty<x<+\infty-1<y<1$ We denote the cardinal number of the set of real numbers by C.

X The set of points in R_{2} has cardinal $C(x y) \leftrightarrow\left(\frac{1+\tanh x}{2}, \frac{1+\tanh y}{2}\right)$ maps the points of R_{2} onto the open square $0<x<10<y<1$.

Consider the point ($U V$) $U=. x_{1} x_{2} \ldots, v=. y_{1} y_{2} \ldots$, unique if we exclude terminating decimals.

$$
(U V) \leftrightarrow \alpha=. x_{1} y_{1} x_{2} y_{2} \ldots
$$

If $\left(U_{1} V_{1}\right)\left(U_{2} V_{2}\right)$ are different

$$
\left(U_{1} V_{1}\right) \leftrightarrow \alpha_{1}\left(U_{2} V_{2}\right) \leftrightarrow \alpha_{2} \quad \text { alph } a_{1} \neq \alpha_{2} .
$$

We have set up a 1-1 correspondence between the set T of points of the square, and a subset S of the points of (01). We can map the points of S onto a subset of T by $U \leftrightarrow\left(U, \frac{1}{2}\right)$. Therefore $\overline{\bar{T}} \leq C \quad c \leq \overline{\bar{T}}$ therefore $\overline{\bar{T}}=c$

XI We can extend the result of X to R_{n} by induction.

Example The set of all sequences $x_{1} x_{2} x_{3} \ldots$ of real numbers has cardinal C.

