REAL ANALYSIS CARDINAL NUMBERS

We use $\overline{\overline{S}}$ for the cardinal number of a set S.

- $\mathbf{I} \ \overline{\overline{S}} \leq \overline{\overline{T}} \ (\text{or } \overline{\overline{T}} \geq \overline{\overline{S}}) \ \text{is to mean "} \exists \ a \ 1\text{-}1 \ \text{correspondence between } S \ \text{and a subset of } T$ " (not necessarily a proper subset).
- II $\overline{\overline{S}} = \overline{\overline{T}}$ is to mean " \exists a 1-1 correspondence between S and T. [< is to mean \leq but not =]

We have that:

- (i) The definitions are reasonable when applied to finite sets.
- (ii) (a) \leq is transitive, i.e.

$$\overline{\overline{X}} \le \overline{\overline{Y}} \quad \overline{\overline{Y}} \le \overline{\overline{Z}} \Rightarrow \overline{\overline{X}} \le \overline{\overline{Z}}$$

 $(\mathbf{b}) =$ is transitive

$$\overline{\overline{X}} = \overline{\overline{Y}} \quad \overline{\overline{Y}} = \overline{\overline{Z}} \Rightarrow \overline{\overline{X}} = \overline{\overline{Z}}$$

= is symmetric

$$\overline{\overline{S}} = \overline{\overline{T}} \Leftrightarrow \overline{\overline{T}} = \overline{\overline{S}}$$

$$= \text{ is reflexive} \\ \overline{\overline{S}} = \overline{\overline{S}}$$

- (iii) (Bernstein's Lemma) $\overline{\overline{S}} \leq \overline{\overline{T}} \ \overline{\overline{T}} \leq \overline{\overline{S}} \Rightarrow \overline{\overline{S}} = \overline{\overline{T}}$
- (iv) For any two sets either $\overline{\overline{S}} \leq \overline{\overline{T}}$ or $\overline{\overline{T}} \leq \overline{\overline{S}}$.

A set S is said to be enumerable (denumerable, countable) $\Leftrightarrow \exists$ a 1-1 correspondence between S and the set of all natural numbers. χ_0 is called the cardinal number of the set of all natural numbers.

- 1. If $\overline{\overline{S}} \leq \chi_0$ either S is finite or $\overline{\overline{S}} = \chi_0$
- 2. If $\overline{\overline{S}} = \chi_0 S$ can be put in 1-1 correspondence with proper subset of itself.
- 3. Any infinite subset contains an enumerable subset.

- 4. If $\overline{\overline{S}} = \chi_0$ and T is infinite then $\overline{\overline{S \cup T}} = \overline{\overline{T}}$.
- 5. A set is infinite \Leftrightarrow it can be put into 1-1 correspondence with a proper subset of itself.

Proof of A Suppose U and V are such that $\overline{\overline{U}} = \overline{\overline{V}} = \chi_0$.

Then $U = u_1 \ u_2 \ u_3 \dots$ $V = v_1 \ v_2 \ v_3 \dots$ $U \cup V = u_1 \ v_2 \ u_2 \ v_2 \dots = W = w_1 \ w_2 \ w_3 \ w_4 \dots$ therefore $\overline{U \cup V} = \chi_0$. We define a 1-1 correspondence between S and T thus T contains a subset $T'|\overline{\overline{T}}' = \chi_0$. We map $S \cup T'$ onto T'(1-1) and map all the elements of T not in T' onto themselves therefore $\overline{\overline{S}} \cup \overline{\overline{T}} = \overline{\overline{T}}$.

I The set of all pairs (m, n) of all natural numbers is enumerable.

Set up the 1-1 correspondence $(m, n) \Leftrightarrow 2^m 3^n$, for by the theorem of uniqueness of prime factorisation $2^{m_1} 3^{n_1} = 2^{m_2} 3^{n_2} \Leftrightarrow m_1 = m_2 n_1 = n_2$.

Therefore we have mapped the set onto an infinite subset of the natural numbers which is enumerable.

- II S_1, S_2, S_3, \ldots enumerable $\Rightarrow U_{r=1}^{\infty} S_r$ enumerable.
 - $S_1 = a_{11} a_{12} a_{13} \dots$

 $S_2 = a_{21} a_{22} a_{23} \dots$

We assign to a_{mn} the number given by :

f(mn) is a 1-1 correspondence between the set of pairs of natural numbers and the natural numbers. Assign to an element x of Us_r the least natural number of f(mn) for which $a_{mn} = x$. Then Us_r is enumerable.

III The set of integers h is enumerable.

The set of natural numbers q is enumerable.

The set of all pairs (h,q) is enumerable by (2) $\exists f(h,q)$ mapping the pairs (h,q) in the natural numbers. Now to any rational r assign the least f(h,q) for which $r = \frac{h}{q}$.

IV Suppose $X^1 X^2 \dots X^n$ are enumerable sets. Then the set of $(x^{(1)}x^{(2)}\dots x^{(n)})$ where each $x^{(r)}$ runs independently through the elements of X_r , is enumerable.

 \exists a 1-1 correspondence between the $x^{(r)}$ and the natural numbers U_u .

We use induction. Suppose true for n = m. \exists a 1-1 correspondence between $(U_1 \dots U_m \ U_{m+1})$ and (V, U_{m+1}) .

This is enumerable by III.

- V The result of *IV* remains true if we have an enumerable system $X^{(1)}X^{(2)}\dots$ and consider all $(x^{(1)}x^{(2)}\dots x^{(n)})$ with *n* variables but finite. We have $S : (x^{(1)}x^{(2)}\dots x^{(n)})$ We have $S_n : (x^{(1)}x^{(2)}\dots x^{(n)}, n$ fixed. This is enumerable by IV. $S = \bigcup_{r=1}^{\infty} S_n$ and is enumerable by II.
- **VI** Consider the set of all polynomials.

 $S = b_0 x^n + b_1 x^{n-1} + \ldots + b_n$ where the b_i are integers. This set is enumerable by V, but to each $P_n(x)$ corresponds at most *n* algebraic numbers. Hence the set of all algebraic numbers is enumerable.

Example The set of discontinuities of a given monotone function is enumerable.

VII The set of all real numbers is not enumerable.

(i) Consider all real numbers $0 < \alpha \le 1$. Each α has a unique decimal expansion

 $.x_1x_2x)3...$

providing we insist that the number of non-zero x's is not finite. Suppose the set of *alpha* in $0 < \alpha \leq 1$ is enumerable. Enumerate them

$$\begin{aligned} \alpha_1 &+ .x_{11}x_{12}x_{13}x_{14}\dots \\ \alpha_2 &= .x_{21}x_{22}x_{23}x_{24}\dots \\ \alpha_3 &= .x_{31}x_{32}x_{33}x_{34}\dots \end{aligned}$$

Let $\beta = .y_1y_2y_3... \ 0 < \beta \le 1$ where $y_r = 1$ if $x_{rr} \ne 1$ and $y_r = 2$ if $x_{rr} = 1$.

This β is not to be found in the sequence $\alpha_1 \alpha_2 \dots \beta \neq \alpha_n$ since they differ in the *n*th place.

(ii) Let $0 \le \alpha \le 1$ and suppose that $\alpha_1 \alpha_2$ is an enumeration of this set.

Trisect the interval [01] by 3 closed intervals. At least one does not contain α_1 . Choose J_1 , the interval nearest the left not containing α_1 . $\exists J_2$ nearest the left not containing α_2 . These intervals tend to a limit point $l \ 0 \le L \le 1$. For if $J_1 = [a_n \ b_n] \ a_n \to l \ b_n \to l$ as $n \to \infty$. $a_1 \notin J_1, \ \alpha_2 \notin J_2 \ldots \ J_1 \supset J_2 \supset J_3 \ldots$ therefore $l \in J_n$ for $n = 1, 2, \ldots$ therefore $l \neq \alpha_n \ldots$

Contradiction- for $0 \le l \le 1$.

- **VIII** For any a < b the points of (ab) have the same cardinal number as the points in $(0 \ 1) \exists a 1 1$ correspondence between the points of $(0 \ 1)$ and the points of $(a \ b)$ given by $0 < t < 1 \ t \leftrightarrow a + (b a)t$.
- **IX** The cardinal number of the set of real numbers is the same as the cardinal number of the set of points (0 1).

A (1-1) correspondence is $y \leftrightarrow \tanh(x) - \infty < x < +\infty - 1 < y < 1$

We denote the cardinal number of the set of real numbers by C.

X The set of points in R_2 has cardinal $C(x \ y) \leftrightarrow \left(\frac{1+\tanh x}{2}, \frac{1+\tanh y}{2}\right)$ maps the points of R_2 onto the open square 0 < x < 1 0 < y < 1.

Consider the point (U V)

 $U = .x_1 x_2 ..., v = .y_1 y_2 ...,$ unique if we exclude terminating decimals.

$$(UV) \leftrightarrow \alpha = .x_1y_1x_2y_2\dots$$

If (U_1V_1) (U_2V_2) are different

$$(U_1V_1) \leftrightarrow \alpha_1 \ (U_2V_2) \leftrightarrow \alpha_2 \ alpha_1 \neq \alpha_2.$$

We have set up a 1-1 correspondence between the set T of points of the square, and a subset S of the points of $(0 \ 1)$. We can map the points of S onto a subset of T by $U \leftrightarrow (U, \frac{1}{2})$. Therefore $\overline{\overline{T}} \leq C$ $c \leq \overline{\overline{T}}$ therefore $\overline{\overline{T}} = c$

XI We can extend the result of X to R_n by induction.

Example The set of all sequences $x_1 x_2 x_3 \dots$ of real numbers has cardinal C.