
REAL ANALYSIS
CARDINAL NUMBERS

We use S for the cardinal number of a set S.

I S ≤ T (or T ≥ S) is to mean “∃ a 1-1 correspondence between S and a
subset of T” (not necessarily a proper subset).

II S = T is to mean “∃ a 1-1 correspondence between S and T .

[< is to mean ≤ but not =]

We have that:

(i) The definitions are reasonable when applied to finite sets.

(ii) (a) ≤ is transitive, i.e.

X ≤ Y Y ≤ Z ⇒ X ≤ Z

(b) = is transitive

X = Y Y = Z ⇒ X = Z

= is symmetric

S = T ⇔ T = S

= is reflexive

S = S

(iii) (Bernstein’s Lemma) S ≤ T T ≤ S ⇒ S = T

(iv) For any two sets either S ≤ T or T ≤ S.

A set S is said to be enumerable (denumerable, countable) ⇔ ∃ a 1-1 corre-
spondence between S and the set of all natural numbers.
χ0 is called the cardinal number of the set of all natural numbers.

1. If S ≤ χ0 either S is finite or S = χ0

2. If S = χ0 S can be put in 1-1 correspondence with proper subset of
itself.

3. Any infinite subset contains an enumerable subset.
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4. If S = χ0 and T is infinite then S ∪ T = T .

5. A set is infinite⇔ it can be put into 1-1 correspondence with a proper
subset of itself.

Proof of A Suppose U and V are such that U = V = χ0.

Then U = u1 u2 u3 . . .

V = v1 v2 v3 . . .

U ∪ V = u1 v2 u2 v2 . . . = W = w1 w2 w3 w4 . . . therefore U ∪ V = χ0.

We define a 1-1 correspondence between S and T thus T contains a

subset T ′|T
′

= χ0.

We map S ∪ T ′ onto T ′(1-1) and map all the elements of T not in T ′

onto themselves therefore S ∪ T = T .

I The set of all pairs (m,n) of all natural numbers is enumerable.

Set up the 1-1 correspondence (m,n) ⇔ 2m3n, for by the theorem of
uniqueness of prime factorisation 2m13n1 = 2m23n2 ⇔ m1 = m2 n1 =
n2.

Therefore we have mapped the set onto an infinite subset of the natural
numbers which is enumerable.

II S1, S2, S3, . . . enumerable ⇒ U∞r=1Sr enumerable.

S1 = a11 a12 a13 . . .

S2 = a21 a22 a23 . . .

We assign to amn the number given by :

f(mn) is a 1-1 correspondence between the set of pairs of natural num-
bers and the natural numbers. Assign to an element x of Usr the least
natural number of f(mn) for which amn = x. Then Usr is enumerable.

III The set of integers h is enumerable.

The set of natural numbers q is enumerable.

The set of all pairs (h, q) is enumerable by (2) ∃f(h, q) mapping the
pairs (h, q) in the natural numbers. Now to any rational r assign the
least f(h, q) for which r = h

q
.

IV SupposeX1 X2 . . . Xn are enumerable sets. Then the set of (x(1)x(2) . . . x(n)

where each x(r) runs independently through the elements of Xr, is enu-
merable.
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∃ a 1-1 correspondence between the x(r) and the natural numbers Uu.

We use induction. Suppose true for n = m. ∃ a 1-1 correspondence
between (U1 . . . Um Um+1) and (V, Um+1).

This is enumerable by III.

V The result of IV remains true if we have an enumerable systemX (1)X(2) . . .

and consider all (x(1)x(2) . . . x(n)) with n variables but finite.

We have S : (x(1)x(2) . . . x(n))

We have Sn : (x(1)x(2) . . . x(n), n fixed. This is enumerable by IV.

S = ∪∞r=1Sn and is enumerable by II.

VI Consider the set of all polynomials.

S = b0x
n + b1x

n−1 + . . . + bn where the bi are integers. This set is
enumerable by V, but to each Pn(x) corresponds at most n algebraic
numbers. Hence the set of all algebraic numbers is enumerable.

Example The set of discontinuities of a given monotone function is
enumerable.

VII The set of all real numbers is not enumerable.

(i) Consider all real numbers 0 < α ≤ 1. Each α has a unique decimal
expansion

.x1x2x)3 . . .

providing we insist that the number of non-zero x’s is not finite.

Suppose the set of alpha in 0 < α ≤ 1 is enumerable. Enumerate
them

α1 + .x11x12x13x14 . . .

α2 = .x21x22x23x24 . . .

α3 = .x31x32x33x34 . . .

Let β = .y1y2y3 . . . 0 < β ≤ 1 where yr = 1 if xrr 6= 1 and yr = 2
if xrr = 1.

This β is not to be found in the sequence α1α2 . . .. β 6= αn since
they differ in the nth place.
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(ii) Let 0 ≤ α ≤ 1 and suppose that α1α2 is an enumeration of this
set.

Trisect the interval [01] by 3 closed intervals. At least one does not
contain α1. Choose J1, the interval nearest the left not containing
α1. ∃J2 nearest the left not containing α2. These intervals tend
to a limit point l 0 ≤ L ≤ 1. For if J1 = [an bn] an → l bn → l as
n→∞.

a1 6∈ J1, α2 6∈ J2 . . . J1 ⊃ J2 ⊃ J3 . . . therefore

l ∈ Jn for n = 1, 2, . . . therefore

l 6= αn . . .

Contradiction- for 0 ≤ l ≤ 1.

VIII For any a < b the points of (ab) have the same cardinal number as the
points in (0 1) ∃ a 1-1 correspondence between the points of (0 1) and
the points of (a b) given by 0 < t < 1 t↔ a+ (b− a)t.

IX The cardinal number of the set of real numbers is the same as the cardinal
number of the set of points (0 1).

A (1-1) correspondence is y ↔ tanh(x) −∞ < x < +∞ − 1 < y < 1

We denote the cardinal number of the set of real numbers by C.

X The set of points in R2 has cardinal C (x y) ↔
(

1+tanh x
2

, 1+tanh y

2

)

maps
the points of R2 onto the open square 0 < x < 1 0 < y < 1.

Consider the point (U V )

U = .x1x2 . . . , v = .y1y2 . . ., unique if we exclude terminating decimals.

(UV )↔ α = .x1y1x2y2 . . .

If (U1V1) (U2V2) are different

(U1V1)↔ α1 (U2V2)↔ α2 alpha1 6= α2.

We have set up a 1-1 correspondence between the set T of points of the
square, and a subset S of the points of (0 1). We can map the points of

S onto a subset of T by U ↔ (U, 1
2
). Therefore T ≤ C c ≤ T therefore

T = c

XI We can extend the result of X to Rn by induction.
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Example The set of all sequences x1x2x3 . . . of real numbers has car-
dinal C.
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