REAL ANALYSIS PARTIAL SUMMATION (ABEL SUMMATION)

As part of the analogy existing between summation and integration, partial summation corresponds to integration by parts.

$$u \le v$$
 and $s_m = \sum_{r=u}^m a_r$ then we have the identity

$$\sum_{m=u}^v a_m b_m = b_{v+1} s_V + \sum_{m=u}^v s_m (b_m - b_{m+1})$$
(1)

Proof

If

$$\sum_{m=u}^{v} a_m b_m = \sum_{m=u}^{v} (s_m - s_{m-1}) b_m$$
$$= b_{v+1} s_v + \sum_{m=u}^{v} s_m (b_m - b_{m+1})$$

with the convention that empty sums are zero.

Abel's lemma With the above notation, suppose that $\{b_m\}$ is a positive monotonic decreasing sequence, and that $|s_m| \leq M$ for all m.

Then

$$\left|\sum_{m=u}^{v} a_m b_m\right| \le M b_v$$

Proof

$$\begin{vmatrix} \sum_{m=u}^{v} a_m b_m \end{vmatrix} = \begin{vmatrix} \sum_{m=u}^{v} s_m (b_m - b_{m+1}) + s_v b_{v+1} \end{vmatrix}$$

$$\leq \sum_{m=u}^{v} |s_m| (b_m - b_{m+1}) + |s_v| b_{v+1}$$

$$\leq M \left[\sum_{m=u}^{v} (b_m - b_{m+1}) + b_{v+1} \right]$$

$$= M b_0$$

Theorem 6 Dirichlet's test Suppose that ϕ_n is a monotonic decreasing sequence converging to zero, and that $\sum a_n$ is a series with bounded partial sums. Then $\sum_{n=1}^{\infty} a_n \phi_n$ is convergent.

Proof
$$\left|\sum_{m=1}^{n} a_{m}\right| < K$$
 for all n
 $\left|\sum_{m=0}^{v} a_{m}\right| = \left|\sum_{1}^{v} a_{m} - \sum_{1}^{u-1} a_{m}\right| \le \left|\sum_{1}^{v} a_{m}\right| + \left|\sum_{1}^{u-1} a_{m}\right| < 2K.$

Given $\varepsilon > 0$, \exists a natural number $N = N(\varepsilon) | phi_v < \frac{\varepsilon}{2K}$ for all $u \ge N$. By Abel's Lemma, therefore, $\left| \sum_{m=0}^{v} a_m \phi_m \right| \le 2K \left(\frac{\varepsilon}{2K} \right) = \varepsilon$ whenever $v \ge u \ge N \Rightarrow \sum a_n \phi_n$ converges by general principle of convergence.

- **Theorem 7 Abel's Test** Suppose that ϕ_n is a monotonic sequence converging to a finite limit. Let $\sum a_n$ be a convergent series. Then $\sum_{n=1}^{\infty} a_n \phi_n$ is convergent.
- **Proof** 1. Suppose ϕ_n is monotonic decreasing and z $phi_n \to l \text{ as } m \to \infty$ therefore ψ_n is decreasing and $\psi_n = \phi_n - l \to 0$ as $n \to \infty$. Therefore by Direchlet's test $\sum a_n \psi_n$ converges. Write

$$\Psi = \lim_{m \to \infty} \sum_{r=1}^{m} a_n (\phi_n - l)$$
$$= \lim_{m \to \infty} \sum_{n=1}^{m} a_n \phi_n - l \sum_{1}^{\infty} a_n$$

Therefore $\sum_{a=1}^{\infty} a_n \phi_n = \Psi - l \sum_{1}^{\infty} a_n$.

- 2. Suppose ϕ_n is monotonic increasing and $\phi_n \to L$ as $m \to \infty$. Write $\psi'_n = l - \phi_n \ \psi'_n$ is increasing and $\psi'_n \to 0$. Therefore as before $\sum a_n \phi_n$ converges.
- **Theorem 8 Root Test** The series $\sum u_n$ converges or diverges according as $\overline{\lim}(u_n)^{\frac{1}{n}}$ is greater than or less than one.
- **Proof** 1. Suppose $\overline{\lim}_{n\to\infty}(u_n)^{\frac{1}{n}} = \alpha < 1$. Choose $\beta | \alpha < \beta < 1$. Take $\varepsilon = \beta \alpha > 0$. From the property of the upper limit, $\exists m = m(\beta) | (u_n)^{\frac{1}{n}} < \beta$ for all $n \ge m$ so $u_n < \beta^n$ for all $n \ge m$. Therefore $\sum u_n$ converges by comparison with $\sum \beta^n$.
 - 2. Suppose $\overline{\lim}_{n\to\infty}(u_n)^{\frac{1}{n}} = \alpha > 1$ then $(u_n)^{\frac{1}{n}} > 1$ for an infinity of *n* therefore $u_n > 1$ for an infinity of *n* therefore $u_n \not\to 0$ as $n \to \infty$ therefore $\sum u_n$ diverges.

- **Theorem 9** \exists a number R such that the power series $\sum a_n z^n$ converges absolutely for |z| < R and diverges for |z| > R, and $R^{-1} = \overline{\lim}_{n \to \infty} |a_n|^{\frac{1}{n}}$, with the appropriate conventions when RHS=0 or $+\infty$.
- **Proof** (i) if $|a_n|^{\frac{1}{n}} \to 0$ as $n \to \infty$ $|a_n z^n|^{\frac{1}{n}} = |a_n|^{\frac{1}{n}} |z| \to 0$ as $n \to \infty$ for all z therefore by Root rest $\sum |a_n z^n|$ converges.
 - (ii) If $\overline{\lim} |a_n|^{\frac{1}{n}} = \infty$ the power series does not converge for $z \neq 0$ since $\overline{\lim} |a_n z^n|^{\frac{1}{n}} = \overline{\lim} |a_n|^{\frac{1}{n}} R = +\infty$.
 - (iii) If $\overline{\lim} |a_n|^{\frac{1}{n}}$ is finite and non-zero, we write it equal to $\frac{1}{R} R > 0$ $\overline{\lim} |a_n z^n|^{\frac{1}{n}} = \frac{|z|}{R}$. Hence by root test, the series converges or diverges according as |z| < R or |z| > R. R is called the radius of convergence.

 $R^{-1} = \overline{\lim} |a_n|^{\frac{1}{n}}$ with, conventionally, R = 0 if RHS= $+\infty$ and $R = \infty$ is RHS=0.