
REAL ANALYSIS
PARTIAL SUMMATION (ABEL SUMMATION)

As part of the analogy existing between summation and integration, partial
summation corresponds to integration by parts.

If u ≤ v and sm =
m
∑

r=u

ar then we have the identity

v
∑

m=u

ambm = bv+1sV +
v
∑

m=u

sm(bm − bm+1) (1)

Proof

v
∑

m=u

ambm =
v
∑

m=u

(sm − sm−1)bm

= bv+1sv +
v
∑

m=u

sm(bm − bm+1)

with the convention that empty sums are zero.

Abel’s lemma With the above notation, suppose that {bm} is a positive
monotonic decreasing sequence, and that |sm| ≤M for all m.

Then
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v
∑

m=u

sm(bm − bm+1) + svbv+1
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≤
v
∑

m=u

|sm|(bm − bm+1) + |sv|bv+1

≤ M

[

v
∑

m=u

(bm − bm+1) + bv+1

]

= Mb0

Theorem 6 Dirichlet’s test Suppose that φn is a monotonic decreasing
sequence converging to zero, and that

∑

an is a series with bounded

partial sums. Then
∞
∑

n=1

anφn is convergent.
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Proof
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Given ε > 0, ∃ a natural number N = N(ε)|phiv <
ε

2K
for all u ≥ N .

By Abel’s Lemma, therefore,
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v
∑

m=0

amφm
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∣
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∣

∣

≤ 2K
(

ε

2K

)

= ε whenever

v ≥ u ≥ N ⇒
∑

anφn converges by general principle of convergence.

Theorem 7 Abel’s Test Suppose that φn is a monotonic sequence con-

verging to a finite limit. Let
∑

an be a convergent series. Then
∞
∑

n=1

anφn

is convergent.

Proof 1. Suppose φn is monotonic decreasing and z
phin → l as m→∞ therefore ψn is decreasing and ψn = φn− l →
0 as n → ∞. Therefore by Direchlet’s test

∑

anψn converges.
Write

Ψ = lim
m→∞

m
∑

r=1

an(φn − l)

= lim
m→∞

m
∑

n=1

anφn − l
∞
∑

1

an

Therefore
∑∞

a=1 anφn = Ψ− l
∑∞

1 an.

2. Suppose φn is monotonic increasing and φn → L as m → ∞.
Write ψ′n = l − φn ψ′n is increasing and ψ′n → 0. Therefore as
before

∑

anφn converges.

Theorem 8 Root Test The series
∑

un converges or diverges according as
lim(un)

1

n is greater than or less than one.

Proof 1. Suppose limn→∞(un)
1

n = α < 1. Choose β|α < β < 1. Take
ε = β − α > 0. ¿From the property of the upper limit, ∃m =
m(β)|(un)

1

n < β for all n ≥ m so un < βn for all n ≥ m. Therefore
∑

un converges by comparison with
∑

βn.

2. Suppose limn→∞(un)
1

n = α > 1 then (un)
1

n > 1 for an infinity of
n therefore un > 1 for an infinity of n therefore un 6→ 0 as n→∞
therefore

∑

un diverges.
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Theorem 9 ∃ a number R such that the power series
∑

anz
n converges ab-

solutely for |z| < R and diverges for |z| > R, and R−1 = limn→∞|an|
1

n ,
with the appropriate conventions when RHS=0 or +∞.

Proof (i) if |an|
1

n → 0 as n→∞ |anz
n|

1

n = |an|
1

n |z| → 0 as n→∞ for all
z therefore by Root rest

∑

|anz
n| converges.

(ii) If lim|an|
1

n =∞ the power series does not converge for z 6= 0 since

lim|anz
n|

1

n = lim|an|
1

nR = +∞.

(iii) If lim|an|
1

n is finite and non-zero, we write it equal to 1

R
R >

0 lim|anz
n|

1

n = |z|
R
. Hence by root test, the series converges or

diverges according as |z| < R or |z| > R. R is called the radius of
convergence.

R−1 = lim|an|
1

n with, conventionally, R = 0 if RHS= +∞ and
R =∞ is RHS=0.
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