Question

A particle is thrown vertically upwards from the surface of the earth with a speed $1 \mathrm{~ms}^{-1}$.
(You may assume the gravitational field is constant with $\mathrm{g}=9,8 \mathrm{~ms}^{-2}$)
(i) How long does it take for it to return to earth?
(ii) What is its maximum height?
(iii) What is its maximum speed?

Answer

Newton's 2nd Law: $m \ddot{y}=-m g \Rightarrow \ddot{y}=-g$
Therefore $y=v t-\frac{1}{2} g t^{2}$
Initially $\dot{y}=v=1 \mathrm{~ms}^{-1}$
(i) The particle returns to the ground when $y=0$.

$$
\begin{array}{rlrl}
v t-\frac{1}{2} g t^{2}=0 & \Rightarrow t\left(v-\frac{1}{2} g t\right)=0 & \\
& \Rightarrow t=0 \text { or } & v-\frac{1}{2} g t & =0 \\
& & \frac{1}{2} g t & =v \\
v=1, \text { and } g=9.8) & & t & =\frac{2 v}{g} \\
& & & t \\
& & =\frac{2 \times 1}{9.8} \\
& & & \\
& & & 0.2 s
\end{array}
$$

(ii) The maximum height occurs when there is no upward speed.

Thus $\dot{y}=v-g t=0 \Rightarrow t=\frac{v}{g}=\frac{1}{9.8} s$
(iii) The maximum speed occurs at $y=0$, and is therefore $1 \mathrm{~ms}^{-1}$

