Question

The following equations are written in terms of spherical polar co-ordinates (r, θ, ϕ). What surfaces or curves do they represent?
(a) $r \cos (\theta)=1$;
(b) $\sin (\theta)=\frac{\pi}{4}$;
(c) $\theta=\frac{\pi}{2}, r \cos (\phi)=0$;
(d) $\theta=\frac{\pi}{4}, r \cos (\theta)=1$.

Answer

Spherical polar co-ordinates (r, θ, ϕ). $r \geq 0,0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$ with $\mathrm{x}=\mathrm{r} \sin \theta \cos \phi, \mathrm{y}=\mathrm{r} \sin \theta \sin \phi$ and $\mathrm{z}=\mathrm{r} \cos \theta$.

(a) $r \cos (\theta)=1 \Rightarrow z=1$ Since x and y are arbitrary, we have the plane parallel to the xy-plane at height $\mathrm{z}=1$.

(b) $\sin (\theta)=\frac{\pi}{4}$. Since $0 \leq \theta \leq \pi$ there are two solutions, $\theta \approx 51.8^{\circ}$ or $\theta=180-51.8=128.2^{\circ}$. Each of these gives a cone:

The required curve / surface is the union of all possible solutions and so we obtain the double cone:

(c) $\theta=\frac{\pi}{2} \Rightarrow z=r \cos \frac{\pi}{2}=0$, so the surface / curve lies in the xy-plane. $r \cos (\phi)=0 \Rightarrow$ either $r=0$ or $\cos \phi=0$
$r=0(x, y, z)=(0,0,0)$ so we have the single point, the origin $\cos \phi=0, \quad(r \neq 0) \quad x=r \sin \theta \cos \phi=0$ and $\cos \phi=0 \Rightarrow \sin \phi=$ +1 or -1 so the required curve is just the y-axis.

(d) If $\theta=\frac{\pi}{4}, r \cos (\theta)=1 \Rightarrow r \cos \frac{\pi}{4}=1 \Rightarrow r=\sqrt{2}$.

Hence $z=r \cos \theta=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1$ This gives the circle lying in the plane $z=1$, whose centre lies on the the z -axis. The circle has radius $r \sin \frac{\pi}{4}=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=1$.

