Question

The following equations are written in terms of cylindrical co-ordinates (ρ, ϕ, z). What surfaces or curves do they represent?
(a) $\phi=\frac{\pi}{4}, z=2$;
(b) $\rho^{2}+z^{2}=9$;
(c) $\rho=z \tan (\alpha)$ where $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is a real constant;
(d) $\rho \sin (\phi)=1, z=0$.

Answer

Cylindrical co-ordinates (ρ, ϕ, z).

$$
\rho \geq 0 \text { and } 0 \leq \phi \leq 2 \pi
$$

Also, $x=\rho \cos \phi$ and $y=\rho \sin \phi$

(a)

$$
\phi=\frac{\pi}{4} \text { and } \mathrm{z}=2
$$

This gives a half line at height $z=2$ in the direction $\phi=\frac{\pi}{4}$
(i.e. $x=y$)

(b) $\rho^{2}+z^{2}=9$

Now $x^{2}+y^{2}=\rho^{2} \cos ^{2} \phi+\rho^{2} \sin ^{2} \phi=\rho^{2}$
So we have $\left(x^{2}+y^{2}\right)+z^{2}=9$ or $x^{2}+y^{2}+z^{2}=3^{2}$ which defines a sphere centre the origin of radius 3 .

(c) $\rho=z \tan (\alpha)$ for $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$
we have the righthanded triangle

so that $\tan (\alpha)=\frac{\rho}{z}$ and hence $\rho=z \tan (\alpha)$.

If we now let ϕ vary as $0 \leq \phi \leq 2 \pi$, we obtain a cone angle α.

(d) $\rho \sin (\phi)=1, z=0$. Since $z=0$ we restrict to the xy plane.

Now from the triangle we have $\sin \phi=\frac{y}{\rho}$ and so $y=\rho \sin \phi$.

Hence $\rho \sin \phi=1 \Rightarrow y=1$, and letting the x vary we obtain the line $y=1$ in the xy-plane.

