Question

Let \mathcal{O} be the opportunity set, in risk/return space, for a set of risky assets (none of which are perfectly negatively correlated). Assume that short selling is allowed and that there is also a riskless investment with return R_{F} available. Suppose that an investor choses to invest $X \geq 0$ in a purely risky portfolio \mathcal{P}, with variance $\sigma_{\mathcal{P}}^{2}$ and expected return $R_{\mathcal{P}}$, and $1-X$ in the riskless investment. Show that as X varies the investor's total portfolio lies along a line of slope $\left(R_{\mathcal{P}}-R_{F}\right) / \sigma_{\mathcal{P}}$ and intercept R_{F}. Hence or otherwise, deduce that the problem of finding the capital market line reduces to maximizing the slope of the line above all possible portfolios in \mathcal{O}.
Consider a situation where there are three risky assets S_{1}, S_{2} and S_{3} with respective expected returns

$$
R_{1}=0.1, \quad R_{2}=0.12, \quad R_{3}=0.18
$$

variances and covariances given by

$$
\begin{gathered}
\sigma_{1}^{2}=0.0016, \quad \sigma_{12}=0.0016, \quad \sigma_{13}=0 \\
\sigma_{2}^{2}=0.01, \quad \sigma_{23}=0.0012, \quad \sigma_{3}^{2}=0.0144
\end{gathered}
$$

Further, assume that the risk free rate is 0.06 , short selling and borrowing are allowed. Show that under these circumstances, the market price of risk is

$$
\theta=\frac{167}{\sqrt{13861}} \sim 1.418
$$

and that the optimal portfolio of risky assets consists of the following proportions of total wealth invested in S_{1}, S_{2} and S_{3}, respectively,

$$
\begin{aligned}
& \frac{237}{331} \sim 0.716 \\
& \frac{12}{331} \sim 0.036 \\
& \frac{82}{331} \sim 0.247
\end{aligned}
$$

Answer

Let $\Pi=X P+(1-X) R_{f}, R_{f}=$ risk free investment.
Then

$$
\begin{aligned}
& R_{\Pi}=\text { expected return on } \Pi=E\left(X P+(1-X) R_{f}\right) \\
& =X E(P)+(1-X) E\left(R_{f}\right) \\
& =X R_{P}+(1-X) R_{F} \\
& \sigma_{\Pi}^{2}=\text { variance of } \Pi=E\left(\left(X P+(1-X) R_{f}\right)^{2}\right) \\
& -E\left(X P+(1-X) R_{f}\right)^{2} \\
& =E\left(X^{2} P^{2}+2 X(1-X) P R_{f}+(1-X)^{2} R_{f}^{2}\right) \\
& -X^{2} R_{P}^{2}-2 X(1-X) R_{P} R_{F}-(1-X)^{2} R_{F}^{2} \\
& \left.=X^{2}\left(E\left(P^{2}\right)\right)-R_{P}^{2}\right)+2 X(1-X)\left[R_{F} E(P)\right. \\
& \left.-R_{F} R_{P}\right]+(1-X)^{2}\left(E\left(R_{f}^{2}\right)-R_{F}^{2}\right) \\
& =X^{2} \operatorname{Var}(\mathrm{P})=\mathrm{X}^{2} \sigma_{\mathrm{P}}^{2} \quad(\text { note } \mathrm{X} \geq 0) \\
& \Rightarrow \sigma_{\Pi}, R_{\Pi}=X R_{P}+(1-X) R_{F} \text {, so } \\
& \Rightarrow R_{\Pi}=\frac{\sigma_{\Pi}}{\sigma_{P}}+\left(1-\frac{\sigma_{\Pi}}{\sigma_{P}}\right) R_{F} \\
& =R_{F}+\left(\frac{R_{P}-R_{F}}{\sigma_{P}}\right) \sigma_{\Pi}
\end{aligned}
$$

Capital market line is just the straight line through the risk free rate R_{F} at $\sigma=0$ which is tangent to opportunity sets boundary; (can assume opp set convex!)

Evidently it is the line passing through $\left(\mathrm{R}_{\mathrm{F}}, 0\right)$ and some risky portfolio which has greatest possible slope.

Aim is to maximize $\frac{R_{P}-R_{F}}{\sigma_{P}}$ over all possible risky assets.

$$
\begin{aligned}
\operatorname{Let} P= & X_{1} S_{1}+X_{2} S_{2}+X_{3} S_{3} \quad \text { with } \mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}=1 \\
R+P= & X_{1} R_{1}+X_{2} R_{2}+X_{3} R_{3} \\
\sigma_{P}= & \left(X_{1}^{2} \sigma_{1}^{2}+2 X_{1} X_{2} \sigma_{12}+X_{2}^{2} \sigma_{2}^{2}+2 X_{2} X_{3} \sigma_{23}+X_{3}^{2} \sigma_{3}^{2}\right. \\
& \left.+2 X_{1} X_{3} \sigma_{1} \sigma_{3}\right)^{\frac{1}{2}}
\end{aligned}
$$

Thus $\mathrm{R}_{\mathrm{P}}-\mathrm{R}_{\mathrm{F}}=\left(4 X_{1}+6 X_{2}+12 X_{3}\right) / 100$

$$
\begin{aligned}
\sigma+P & =\left(16 X_{1}^{2}+32 X_{1} X_{2}+100 X_{2}^{2}+24 X_{2} X_{3}\right. \\
& \left.+144 X_{3}^{2}\right)^{\frac{1}{2}} / 100
\end{aligned}
$$

So we want to maximize

$$
\begin{aligned}
& \text { (*) } \theta=\frac{4 X_{1}+6 X_{2}+12 X_{3}}{\left(16 X_{1}^{2}+32 X_{1} X_{2}+100 X_{2}^{2}+24 X_{2} X_{3}+144 X_{3}^{2}\right)^{\frac{1}{2}}} \\
& =\frac{4 X_{1}+6 X_{2}+12 X_{3}}{\alpha} \\
& \frac{\partial \theta}{\partial X_{1}} \quad \frac{4}{\alpha}-\frac{1}{2} \frac{\left(4 X_{1}+6 X_{2}+12 X_{3}\right)}{\alpha^{3}}\left(32 X_{1}+32 X_{2}\right)=0 \\
& \Rightarrow \frac{4 X_{1}+6 X_{2}+12 X_{3}}{\alpha^{2}}\left(32 X_{1}+32 X_{2}\right)=8 \\
& \frac{\partial \theta}{\partial X_{2}}=0 \\
& \Rightarrow \frac{4 X_{1}+6 X_{2}+12 X_{3}}{\alpha^{2}}\left(32 X_{1}+200 X_{2}+24 X_{3}\right)=12 \\
& \frac{\partial \theta}{\partial X_{3}}=0 \\
& \Rightarrow \frac{4 X_{1}+6 X_{2}+12 X_{3}}{\alpha^{2}}\left(24 X_{2}+288 X_{3}\right)=24 \\
& \text { Put } z_{i}=\left(\frac{4 X_{1}+6 X_{2}+12 X-3}{\alpha^{2}}\right) X_{i} \text { so we get } \\
& \left(\begin{array}{ccc}
32 & 32 & 0 \\
32 & 200 & 24 \\
0 & 24 & 288
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{c}
8 \\
12 \\
24
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc}
4 & 4 & 0 \\
16 & 100 & 12 \\
0 & 1 & 12
\end{array}\right)\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
6 \\
1
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ccc|c}
4 & 4 & 0 & 1 \\
16 & 100 & 12 & 6 \\
0 & 1 & 12 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
4 & 4 & 0 & 1 \\
0 & 84 & 12 & 2 \\
0 & 1 & 12 & 1
\end{array}\right) \sim\left(\begin{array}{ccc|c}
4 & 4 & 0 & 1 \\
0 & 83 & 0 & 1 \\
0 & 1 & 12 & 1
\end{array}\right)
\end{aligned}
$$

So

$$
\begin{aligned}
z_{2} & =1 / 83 \\
4 z_{1} & =1-4 / 83=79 / 83 \\
12 z_{3} & =1-1 / 83=82 / 83
\end{aligned}
$$

$\Rightarrow \quad z_{1}=79 /(4 \times 83), z_{2}=1 / 83,82 /(12 \times 83)$
Now note that

$$
\begin{aligned}
z_{1}+z_{2}+z_{3} & =\left(\frac{4 X_{1}+6 x_{2}+12 X_{3}}{\alpha^{2}}\right)\left(X_{1}+X_{2}+X_{3}\right) \\
& =\left(\frac{4 X_{1}+6 X_{2}+12 X_{3}}{\alpha^{2}}\right)
\end{aligned}
$$

hence $X_{i}=z_{i} /\left(z_{1}+z_{2}+z_{3}\right) ; z_{1}+z_{2}+z_{3}=\frac{1}{12 \times 83}(82+3 \times 79+12)=\frac{1}{12 \times 83}(331)$
i.e. $\quad X_{1}=\frac{79}{4 \times 83} \times \frac{12 \times 83}{331}=\frac{237}{331}$
$X_{2}=\frac{1}{83} \times \frac{12 \times 83}{331}=\frac{12}{331}$
$X_{3}=\frac{82}{12 \times 83} \times \frac{12 \times 83}{331}=\frac{82}{331}$
Finally put these numbers back into (*) to give

$$
\begin{aligned}
\theta & =\frac{167}{\sqrt{13861}} \\
z_{1} & =\frac{79}{332}=\frac{237}{996} \\
z_{2} & =\frac{1}{83}=\frac{12}{996} \\
z_{3} & =\frac{82}{996}
\end{aligned}
$$

