QUESTION

(a) Compute the following products of the permutations $\sigma=(1576)(234), \tau=$ (132)(4675) expressing your answers in disjoint cycle notation:
(i) $\sigma \tau$.
(ii) $\tau \sigma$.
(iii) $\sigma^{2} \tau^{-1}$.
(b) Express the permutation $\sigma=\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 1 & 3 & 7 & 5 & 2\end{array}\right)$ in disjoint cycle notation and as a product of transpositions. Fin the order and sign of σ and calculate σ^{2001}.
(c) List all the possible cycle structures for elements of S_{7} and use this to find all the possible orders for elements of S_{7}.
(d) Find all the possible cycle structures corresponding to elements of order 6 in S_{9}, and compute the number of elements of S_{9} corresponding to each cycle structure.

ANSWER
(a) (i) $\sigma \tau=(14)(25)$
(ii) $\tau \sigma=(14)(36)$
(iii) $\sigma^{2} \tau^{-1}=(14637)$
(b) $\sigma=(143)(2657)=(14)(43)(26)(65)(57)$ has order 12 and sign -1 . $2001=166.12+8$ so $\sigma^{2001}=\sigma^{9}$. Now σ^{9} generates the same subgroup of $\langle\sigma\rangle$ as does σ^{3}, hence it has order 4 .

Cycle structure	order
$[7]$	7
$[6]$	6
$[5,2]$	10
$[5]$	5
$[4,3]$	12
	$[4,2]$
$[4]$	4
	$[3,3]$
$[3,2,2]$	3
$[3,2]$	6
	$[3]$
$[2,2,2]$	6
$[2,2]$	2
	$[2]$

(d) The possible cycle structures are $[3,3,2],[3,2,2],[3,2],[6,3],[6,2],[6]$.

There are respectively $9.8 .7 .6 .5 .4 .3 .2 /(3.3 .2 .2)$, 9.8.7.6.5.4.3/(3.2.2.2), 9.8.7.6.5/(3.2), 9.8.7.6.5.4.3.2.1/(6.3), 9.8.7.6.5.4.3.2/(6.2) and 9.8.7.6.5.4/6 elements with these structures.

