QUESTION

- (a) Compute the following products of the permutations $\sigma = (1576)(234)$, $\tau = (132)(4675)$ expressing your answers in disjoint cycle notation:
 - (i) *στ*.
 - (ii) $\tau \sigma$.
 - (iii) $\sigma^2 \tau^{-1}$.
- (b) Express the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 6 & 1 & 3 & 7 & 5 & 2 \end{pmatrix}$ in disjoint cycle notation and as a product of transpositions. Fin the order and sign of σ and calculate σ^{2001} .
- (c) List all the possible cycle structures for elements of S_7 and use this to find all the possible orders for elements of S_7 .
- (d) Find all the possible cycle structures corresponding to elements of order 6 in S_9 , and compute the number of elements of S_9 corresponding to each cycle structure.

ANSWER

- (a) (i) $\sigma \tau = (14)(25)$ (ii) $\tau \sigma = (14)(36)$ (iii) $\sigma^2 \tau^{-1} = (14637)$
- (b) $\sigma = (143)(2657) = (14)(43)(26)(65)(57)$ has order 12 and sign -1. 2001 = 166.12 + 8 so $\sigma^{2001} = \sigma^9$. Now σ^9 generates the same subgroup of $\langle \sigma \rangle$ as does σ^3 , hence it has order 4.

	Cycle structure	order
(c)	[7]	7
	[6]	6
	[5, 2]	10
	[5]	5
	[4, 3]	12
	[4, 2]	4
	[4]	4
	[3,3]	3
	[3, 2, 2]	6
	[3, 2]	6
	[3]	6
	[2, 2, 2]	2
	[2, 2]	2
	[2]	2
	[1]	1

(d) The possible cycle structures are [3,3,2], [3,2,2], [3,2], [6,3], [6,2], [6]. There are respectively 9.8.7.6.5.4.3.2/(3.3.2.2), 9.8.7.6.5.4.3/(3.2.2.2), 9.8.7.6.5/(3.2), 9.8.7.6.5.4.3.2.1/(6.3), 9.8.7.6.5.4.3.2/(6.2) and 9.8.7.6.5.4/6 elements with these structures.