## Exam Question

## Topic: Double Integral

By changing the variables so that the region $R$ is transformed into a square, evaluate the integral

$$
\iint_{R}\left(5\left(y-x^{2}\right)^{4}+6 x y\right)\left(y+2 x^{2}\right) d(x, y)
$$

where $R$ is the region in the first quadrant bounded by the curves

$$
y=x^{2}, \quad y=x^{2}+1, \quad x y=1, \quad x y=2
$$

## Solution

Let $u=y-x^{2} ; \quad v=x y$.

$$
\left|\frac{\partial(u, v)}{\partial(x, y)}\right|=\left|\left(\begin{array}{cc}
-2 x & 1 \\
y & x
\end{array}\right)\right|=\left|y+2 x^{2}\right|=y+2 x^{2} \text { in the first quadrant. }
$$

Therefore

$$
\begin{aligned}
I & =\int_{1}^{2} d v \int_{0}^{1}\left(5 u^{4}+6 v\right) d u=\int_{1}^{2}\left[u^{5}+6 u v\right]_{u=0}^{1} d v \\
& =\int_{1}^{2}(1+6 v) d v=\left[v+3 v^{2}\right]_{1}^{2}=10
\end{aligned}
$$

