QUESTION Sketch the following sets and determine which are regions.
(a) $|z-2+i| \leq 1$.
(b) $|2 z+3|>4$.
(c) $\operatorname{Im} z>3$
(d) $|z-4| \geq|z|$
(e) $0 \leq \operatorname{Arg} z \leq \frac{\pi}{4},(z \neq 0$.

ANSWER
(a) $|z-2+1| \leq 1$ is a disk center $2-i$, radius 1 . As it includes the boundary, it is not open and so not a region. (in fact it is a closed set.)
(b) $|2 z+3|>4 \Leftrightarrow\left|z+\frac{3}{2}\right|>2$. This defines a region exterior to a disc centre $-\frac{3}{2}$, radius 2 . It does not include the boundary so it is an open set. Also it is connected and hence a region.
(c) $\operatorname{Im} z>3$ is a half-plane not including the line $\operatorname{Im} z=3$ so it is open and connected and hence a region.
(d) This is the set of points closer to zero than to 4 (including the line $x=2$.) Thus it is the half-plane on the side of the line $x=2$ containing 0 . As it includes the line $x=2$ it is not open and thus not a region.
(e) This set contains the line $\arg z=\frac{\pi}{4}$ so it is not open and hence not a region. Actually, its complement contains 0 but no neighbourhood of 0 so it's complement is not open so the set is also not closed.

