$\begin{array}{c} \text{Vector Fields} \\ \textit{Conservative Fields} \end{array}$

Question

The function \underline{F} is given by $\underline{F} = r^2 \cos \theta \hat{\underline{r}} + \alpha r^{\beta} \sin \theta \hat{\underline{\theta}}$. For what values of the constants α and β is \underline{F} conservative? For these values find a corresponding potential.

Answer

As $\underline{F} = r^2 \cos \theta \hat{\underline{r}} + \alpha r^{\beta} \sin \theta \hat{\underline{\theta}} = \nabla \phi(r, \theta)$ we must have

$$\frac{\partial \phi}{\partial r} = r^2 \cos \theta, \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta} = \alpha r^{\beta} \sin \theta.$$

$$\Rightarrow \phi(r,\theta) = \frac{r^3}{3}\cos\theta + C(\theta)$$

and $C'(\theta) - \frac{r^3}{3} = \frac{\partial\phi}{\partial\theta}$
$$= \alpha r^{\beta+1}\sin\theta.$$

This can be solved for a function $C(\theta)$ which is independent of r if $\alpha = -1/3$ and $\beta = 2$.

In this case, $C(\theta)=C$, with C being a constant. \underline{F} is conservative is the two constants α and β have the above stated values. A potential for \underline{F} is $\phi=\frac{1}{3}r^3\cos\theta+C$.