$\begin{array}{c} \text{Vector Fields} \\ \textit{Conservative Fields} \end{array}$

Question

The vector field \underline{F} is given by

$$\underline{F}(x,y,z) = \frac{2x}{z}\underline{i} + \frac{2y}{z}\underline{j} - \frac{x^2 + y^2}{z^2}\underline{k}.$$

Show that \underline{F} is conservative, and find the potential. Describe the equipotential surfaces and find the field lines of \underline{F} .

Answer

$$F_1 = \frac{2x}{z}$$

$$F_2 = \frac{2y}{z}$$

$$F_3 = -\frac{x^2 + y^2}{z^2}$$

This gives

$$\frac{\partial F_1}{\partial y} = 0 = \frac{\partial F_2}{\partial x}$$

$$\frac{\partial F_1}{\partial z} = -\frac{2x}{z^2} = \frac{\partial F_3}{\partial x}$$

$$\frac{\partial F_2}{\partial z} = -\frac{2y}{z^2} = \frac{\partial F_3}{\partial y}$$

 $\Rightarrow \underline{F}$ can be conservative in \Re^3 except on the plane z=0 where it is not defined. If $\underline{F}=\nabla\phi$

$$\Rightarrow \frac{\partial \phi}{\partial x} = \frac{2x}{z}$$

$$\frac{\partial \phi}{\partial y} = \frac{2y}{z}$$

$$\frac{\partial \phi}{\partial z} = -\frac{x^2 + y^2}{z^2}$$

$$\Rightarrow \phi(x, y, z) = \int \frac{2x}{z} dx$$

$$= \frac{x^2}{z} + C_1(y, z)$$

$$\frac{2y}{z} = \frac{\partial \phi}{\partial y} = \frac{\partial C_1}{\partial y}$$

$$\Rightarrow C_1(y, z) = \frac{y^2}{z} + C_2(z)$$

$$\phi(x, y, z) = \frac{x^2 + y^2}{z} + C_2(z)$$

$$-\frac{x^2 + y^2}{z^2} = \frac{\partial \phi}{\partial z} = -\frac{x^2 + y^2}{z^2} + C_2'(z)$$

$$\Rightarrow C_2(z) = 0$$

So $\phi(x,y,z) = \frac{x^2 + y^2}{z}$ is a potential for \underline{F} , and \underline{F} is conservative on \Re^3 , except where it is not defined on (z=0).

The equipotential surfaces will have the equations $\frac{x^2+y^2}{z}=C$ or $Cz=x^2+y^2$. Therefore the surfaces are circular paraboloids. The field lines of \underline{F} satisfy

$$\frac{dx}{\frac{2x}{z}} = \frac{dy}{\frac{2y}{z}} = \frac{dz}{-\frac{x^2 + y^2}{z^2}}$$

So it can be seen that $\frac{dx}{x} = \frac{dy}{y}$, $\Rightarrow y = Ax$ for an arbitrary constant A.

$$\Rightarrow \frac{dx}{2x} = \frac{z dz}{-(x^2 + y^2)}$$
$$= \frac{z dz}{-x^2(1 + A^2)}$$
$$\Rightarrow -(1 + a^2)x dx = 2z dz.$$

And so

$$\frac{1+A^2}{2}x^2 + z^2 = \frac{B}{2}$$

or

$$x^2 + y^2 + 2z^2 = B$$

with B being a second arbitrary constant. So the field lines of \underline{F} are the ellipses in which the vertical planes containing the z-axis intersects the ellipsoids $x^2 + y^2 + 2z^2 = B$. These are orthogonal to all the equipotential surfaces of \underline{F} .