Vector Fields
 Conservative Fields

Question

(a) Show that the gradient of a function which is expressed in polar coordinates in the plane is

$$
\nabla \phi(t, \theta)=\frac{\partial \phi}{\partial r} \underline{\hat{r}}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\underline{\theta}} .
$$

(b) Use the result from part (a) to show that a necessary condition for the vector field

$$
\underline{F}(r, \theta)=F_{r}(r, \theta) \underline{\hat{r}}+F_{\theta}(r, \theta) \underline{\hat{\theta}}
$$

(expressed in polar coordinates) to be conservative is that

$$
\frac{\partial F_{r}}{\partial \theta}-r \frac{\partial F_{\theta}}{\partial r}=F_{\theta}
$$

Answer
(a) As $x=r \cos \theta$ and $y=r \sin \theta$

$$
\begin{aligned}
\frac{\partial \phi}{\partial r} & =\cos \theta \frac{\partial \phi}{\partial x}+\sin \theta \frac{\partial \phi}{\partial y} \\
\frac{\partial \phi}{\partial \theta} & =-r \sin \theta \frac{\partial \phi}{\partial x}+r \cos \theta \frac{\partial \phi}{\partial y} \\
\text { And } & \\
\underline{\underline{r}} & =\frac{x \underline{i}+y \underline{j}}{r}=(\cos \theta) \underline{i}+(\sin \theta) \underline{j} \\
\underline{\hat{\theta}} & =\frac{-y \underline{i}+x \underline{j}}{r}=-(\sin \theta) \underline{i}+(\cos \theta) \underline{j}
\end{aligned}
$$

This leads to the fact that

$$
\begin{aligned}
\frac{\partial \phi}{\partial r} \underline{\hat{r}}+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \underline{\hat{\theta}}= & \left(\cos ^{2} \theta \frac{\partial \phi}{\partial x}+\sin \theta \cos \theta \frac{\partial \phi}{\partial y}\right) \underline{i} \\
& +\left(\cos \theta \sin \theta \frac{\partial \phi}{\partial x}+\sin ^{2} \theta \frac{\partial \phi}{\partial y}\right) \underline{j} \\
& +\left(\sin ^{2} \theta \frac{\partial \phi}{\partial x}-\sin \theta \cos \theta \frac{\partial \phi}{\partial y}\right) \underline{i} \\
& +\left(-\cos \theta \sin \theta \frac{\partial \phi}{\partial x}+\cos ^{2} \theta \frac{\partial \phi}{\partial y}\right) \underline{j} \\
= & \frac{\partial \phi}{\partial x} \underline{i}+\frac{\partial \phi}{\partial y} \underline{j}=\nabla \phi .
\end{aligned}
$$

(b) If $\underline{F}(r, \theta)=F_{r}(r, \theta) \underline{\hat{r}}+F_{\theta}(r, \theta) \underline{\hat{\theta}}$ is conservative, then $\underline{F}=\nabla \phi$ for a scalar field $\phi(r, \theta)$. Using part (a)

$$
\frac{\partial \phi}{\partial r}=F_{r}, \quad \frac{1}{r} \frac{\partial \phi}{\partial \theta}=F_{\theta} .
$$

In order to have mixed second partial derivatives of ϕ that are equal, it is necessary to have

$$
\begin{gathered}
\frac{\partial F_{r}}{\partial \theta}=\frac{\partial}{\partial r}\left(r F_{\theta}\right)=F_{\theta}+r \frac{\partial F_{\theta}}{\partial r} \\
\text { i.e. } \frac{\partial F_{r}}{\partial \theta}-r \frac{\partial F_{\theta}}{\partial r}=F_{\theta} .
\end{gathered}
$$

