QUESTION

If A and B are $n \times n$ matrices show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Deduce that if two matrices are similar then their traces are equal.

ANSWER
$\operatorname{tr}(A B)=\sum_{r}(A B)_{r r}=\sum_{r} \sum_{s}(A)_{r s}(B)_{s r}=\sum_{s} \sum_{r}(B)_{s r}(A)_{r s}=\sum_{s}(B A)_{s s}=$ $\operatorname{tr}(B A)$
Hence $\operatorname{tr}\left(A^{-1} B A\right)=\operatorname{tr}\left(A^{-1}(B A)\right)=\operatorname{tr}\left((B A) A^{-1}\right)=\operatorname{tr}\left(B A A^{-1}\right)=\operatorname{tr}(B)$.

