Question

A simple random walk has the infinite set $(a, a-1, a-2, \cdots)$ as possible states. State a is an upper reflecting barrier, for which reflection is certain, i.e., if the random walk is in state a at step n then it will be in state $a-1$ at step $n+1$. For all other states, transitions of $+1,-1,0$ take place with probabilities $p, q, 1-p-q$ respectively.
Let $p_{j, k}^{(n)}$ denote the probability that the random walk is in state k at step n, having starter in state j. Obtain difference equations relating to these probabilities, for $k=a, k=a-1$ and $k<1-1$.
Assuming that there is a long-term equilibrium distribution π_{k}), where

$$
\pi_{k}=\lim _{n \rightarrow \infty} p_{j, k}^{(n)} \text { for } \mathrm{j}=\mathrm{a}, \mathrm{a}-1, \mathrm{a}-2, \cdots,
$$

use the difference equations for $p_{j, k}^{(n)}$ to obtain a set of difference equations for π_{k} for $k<a-1$, and also deduce that

$$
p \pi_{a-2}=q \pi_{a-1} \text { and } \mathrm{p} \pi_{\mathrm{a}-1}=\pi_{\mathrm{a}} .
$$

Solve this set of equations for the case $p<q$ to obtain explicit expressions for π_{k} in terms of p, q and a.

Answer

$$
\begin{array}{ll}
k=a: & p_{j a}^{(n)}=p p_{j a-1}^{(n-1)} \\
k=a-1: & p_{j a-1}^{(n)}=p p_{j a-2}^{(n-1)}+p_{j a}^{(n-1)}+(1-p-q) p_{j a-1}^{(n-1)} \\
k<a-1: & p_{j k}^{(n)}=p p_{j k-1}^{(n-1)}+q p_{j k+1}^{(n-1)}+(1-p-q) p_{j k}^{(n-1)}
\end{array}
$$

Assuming an equilibrium distribution $\left(\pi_{k}\right)$, taking limits in the above equations gives

$$
\begin{aligned}
\pi_{a} & =p \pi_{a-1} \\
\pi_{a-1} & =p \pi_{a-2}+\pi_{a}+(1-p-q) \pi_{a-1} \\
\pi_{k} & =p \pi_{k-1}+q \pi_{k+1}+(1-p-q) \pi_{k} \text { for } \mathrm{k}<\mathrm{a}-1
\end{aligned}
$$

substituting the first equation in the second gives

$$
p \pi_{a-2}=q \pi_{a-1}
$$

The solution of the difference equation for $k<a-1$ is $\pi_{k}=A\left(\frac{p}{q}\right)^{k}+B$.
Now if $B \neq 0, \sum_{\pi_{k}}$ diverges, so $B=0$
$\pi_{a-1}=\left(\frac{p}{q}\right) \pi_{a-2}=A\left(\frac{p}{q}\right)^{a-1}$
$\pi_{a}=p \pi_{a-1}=p \cdots A\left(\frac{p}{q}\right)^{a-1}$
We require $\sum \pi_{k}=1$
i.e. $A\left[p\left(\frac{p}{q}\right)^{a-1}+\sum_{k=-\infty}^{a-1}\left(\frac{p}{q}\right)^{k}\right]=1$
$A\left[\frac{p \cdot\left(\frac{p}{q}\right)^{a-1}+\left(\frac{p}{q}\right)^{a-1}}{\left(1-\frac{q}{p}\right)}\right]=1$
$A\left(\frac{p}{q}\right)^{a-1}\left[p+\frac{1}{1-\frac{q}{p}}\right]=1$
$A=\left(\frac{p-q}{p^{2}-p q+p}\right)\left(\frac{q}{p}\right)^{a-1}$
Hence $\pi_{a}=\frac{p-q}{p-q+1}$
and $\pi_{k}=\left(\frac{p-q}{p^{2}-p q+p}\right)\left(\frac{q}{p}\right)^{a-1-k}$ for $k<a$
Can also be done by recursion.

