Question

A gambler with initial capital z plays against an opponent with capital $(z-1)$, where a and z are integers and $0 \leq z \leq a$. At each play the gambler wins 1 with probability p and loses 1 with probability $q=1-p$.
Let q_{z} denote the probability that the gambler will eventually be ruined. Write down a recurrent relation for q_{z} and solve it to obtain explicit formulae for q_{z} in terms of z, a, and p, in both cases $p=\frac{1}{2}$ and $p \neq \frac{1}{2}$.
Two players begin a game of dice with 10 each. At each play they both stake 1 and each of them throws a fair cubical die. If player A has a higher score than player B he wins, otherwise he loses. Player B says that if player A gets down to his last 5 he will give him a chance by changing the game to one of tossing a fair coin until one of the players us ruined. In this game A wins if the coin lands heads and B wins if it lands tails again with 1 stake. Calculate the probability that player A will eventually be ruined.

Answer

We argue conditionally on the result of the first play to obtain
$q_{z}=p q_{z+1}+q p_{z-1}$ where $q=1-p$
The auxiliary equation is

$$
p \lambda^{2}-\lambda+q=0
$$

i.e., $(p \lambda-q)(\lambda-1)$ since $p+q=1$.
so $\lambda=\frac{q}{p} \lambda=1$.
We have unequal roots of $q \neq p$.
Then $q_{z}=A+B\left(\frac{q}{p}\right)^{z} \quad$ for $0<z<a$.
Boundary conditions are $q_{0}=1 m q_{a}=0$
and these give A and B

$$
q_{z}=\frac{\left(\frac{q}{p}\right)^{a}-\left(\frac{q}{p}\right)^{z}}{\left(\frac{q}{p}\right)^{a}-1}
$$

For $p=1=\frac{1}{2}, q_{z}=A z+B$, and then boundary conditions give

$$
q_{z}=1-\frac{z}{a}
$$

For player A to be ruined, he must get down to 5 and then be ruined on the coin-tossing game.

To find the probability that he gets down to 5 is equivalent to playing the dice game where player A has 5 and player B has 10 .
$\mathrm{P}($ player A has a higher score than player $B)=\frac{1}{2}\left(\frac{36-6}{36}\right)=\frac{15}{36}$
so $p=\frac{15}{36}, q=\frac{21}{6}, z=5, a=15, \frac{q}{p}=\frac{21}{5}=\frac{7}{5}$
so $\mathrm{P}($ player A gets down to 5$)=\frac{\left(\frac{7}{5}\right)^{15}-\left(\frac{7}{5}\right)^{5}}{\left(\frac{7}{5}\right)^{15}-1}=0.97167 \ldots$
The game now becomes a fair game with $z=5$ and $a=20$
so $\mathrm{P}($ player A ruined in fair game $)=1-\frac{5}{20}=\frac{3}{4}$
The plays throughout are independent so overall
$\mathrm{P}(A$ ruined $)=0.97167 \cdots \times \frac{3}{4}=.728755771 \cdots$

