Question

A particle is projected along the positive y-axis so that initially, at time $t=0$, its position is $y=0$ and its velocity is $\frac{d y}{d x}=2$. The equation of motion for the particle is described by

$$
\frac{d^{2} y}{d x^{2}}=-8 \cos ^{3}(y) \sin (y)
$$

(a) Calculate $\frac{d f}{d y}$ where $f(y)=\cos ^{4}(y)$
(b) Find expressions for the velocity of the particle as a function of y, and its position as a function of t.
(c) Sketch the graph of the position y as a function of time t for $t \geq 0$. Comment in the time taken for the particle to reach the point $y=\frac{\pi}{2}$

Answer

(a) Find $\frac{d f}{d y}$ where $f(y)=\cos ^{4} y$.

Let $u=\cos y$ so that $\frac{d u}{d y}=-\sin y$
Then $f(u)=u^{4}$ and $\frac{d f}{d u}=4 u^{3}$

$$
\text { using the chain rule : } \begin{aligned}
\frac{d f}{d y}=\frac{d f}{d u} \times \frac{d u}{d y} & =4 u^{3}(\sin y) \\
& =-\cos ^{3} y \sin y
\end{aligned}
$$

(b) Let $v=\frac{d y}{d t}$ so that

$$
\frac{d^{2} y}{d t^{2}}=\frac{d V}{d t}=\frac{d V}{d y} \times \frac{d y}{d t}=\frac{d V}{d y} V
$$

Equation of motion becomes $V \frac{d V}{d y}=-8 \cos ^{3} y \sin y$

$$
\begin{aligned}
\text { which is separable : } \int V d V & =2 \int-4 \cos ^{3} y \sin y d y+C \\
\text { by part (a) }: \frac{1}{2} V^{2} & =2\left(\cos ^{4} y\right)+C \\
\text { initial conditions : } V & =2 \text { and } y=0 \text { when } t=0 \\
\text { so } \frac{1}{2}(4) & =2 \cos ^{4}(0)+C \Rightarrow c=0 \\
\text { hence } V^{2} & =4 \cos ^{4} y \\
\text { velocity as a function of } \mathrm{y} v & =\sqrt{4 \cos ^{4} y}=2 \cos ^{y}
\end{aligned}
$$

(Take the positive square root to staify initial condition $\mathrm{V}=2$ when y $=0$)

Now, $V=\frac{d y}{d t}$ so $\frac{d y}{d t}=2 \cos ^{2} y$
which is separable : $\int \frac{d y}{\cos ^{2} y}=2 \int d t+K$

$$
\begin{aligned}
\int \frac{d y}{\cos ^{y}} & =\tan y \text { standard integral } \\
\text { so } \tan y & =2 t+K
\end{aligned}
$$

using initial conditions $y=0$ when $t=0: \tan (0)=0+K$

$$
\Rightarrow k=0
$$

therefore $\tan y=2 t$ and position as a function of time : $y=\tan ^{-1}(2 t)$
(c) Plot position y against time t :

The graph is asymptotic to the line $y=\frac{\pi}{2}$.
Hence the particle never reaches $y=\frac{\pi}{2}$.

