Question

A particle is projected along the positive y-axis so that initially, at time t = 0, its position is y = 0 and its velocity is $\frac{dy}{dx} = 2$. The equation of motion for the particle is described by

$$\frac{d^2y}{dx^2} = -8\cos^3(y)\sin(y).$$

- (a) Calculate $\frac{df}{dy}$ where $f(y) = \cos^4(y)$
- (b) Find expressions for the velocity of the particle as a function of y, and its position as a function of t.
- (c) Sketch the graph of the position y as a function of time t for $t \ge 0$. Comment in the time taken for the particle to reach the point $y = \frac{\pi}{2}$

Answer

(a) Find
$$\frac{df}{dy}$$
 where $f(y) = \cos^4 y$.
Let $u = \cos y$ so that $\frac{du}{dy} = -\sin y$
Then $f(u) = u^4$ and $\frac{df}{du} = 4u^3$
using the chain rule : $\frac{df}{dy} = \frac{df}{du} \times \frac{du}{dy} = 4u^3(\sin y)$
 $= -\cos^3 y \sin y$

(b) Let
$$v = \frac{dy}{dt}$$
 so that
 $\frac{d^2y}{dt^2} = \frac{dV}{dt} = \frac{dV}{dy} \times \frac{dy}{dt} = \frac{dV}{dy}V$
Equation of motion becomes $V\frac{dV}{dy} = -8\cos^3 y \sin y$
which is separable : $\int VdV = 2\int -4\cos^3 y \sin y dy + by$
by part (a) $:\frac{1}{2}V^2 = 2(\cos^4 y) + C$

initial conditions : V = 2 and y = 0 when t = 0so $\frac{1}{2}(4) = 2\cos^4(0) + C \Rightarrow c = 0$ hence $V^2 = 4\cos^4 y$ velocity as a function of y $v = \sqrt{4\cos^4 y} = 2\cos^y$ C

(Take the positive square root to staify initial condition V = 2 when y = 0)

Now,
$$V = \frac{dy}{dt}$$
 so $\frac{dy}{dt} = 2\cos^2 y$
which is separable : $\int \frac{dy}{\cos^2 y} = 2\int dt + K$
 $\int \frac{dy}{\cos^y} = \tan y \text{ standard integral}$
so $\tan y = 2t + K$
using initial conditions $y = 0$ when $t = 0$: $\tan(0) = 0 + K$
 $\Rightarrow k = 0$
therefore $\tan y = 2t$ and
position as a function of time : $y = \tan^{-1}(2t)$

(c) Plot position y against time t:

The graph is asymptotic to the line $y = \frac{\pi}{2}$. Hence the particle **never** reaches $y = \frac{\pi}{2}$.