QUESTION

Explain why, for any $n, n(n+1)$ is divisible by 2 , and $n(n+1)(n+2)$ is divisible by 3 .
Use these ideas to show that if n is an odd integer then $n^{3}-n$ is divisible by 24.

ANSWER
Given $n \in Z$, either n is even or n is odd (i.e. $n=2 q$ or $n=2 q+1$). If n is odd, $n+1$ is even, so in all cases either n or $n+1$ is even, so $n(n+1)$ is even.
In a similar way, any $n \in Z$ can be written in one of the forms $3 q, 3 q+$ $1,3 q+2$. If $n=3 q$, then $3 \mid n$. If $n=3 q+1$, then $3 \mid n+2$, and if $n=3 q+2$, then $3 \mid n+1$. Thus in all cases, n divides one of $n, n+1, n+2$ and hence $3 \mid n(n+1)(n+2)$, that is to say, 3 divides the product of any 3 consecutive integers.
Now $n^{3}-n=n\left(n^{2}-1\right)=n(n-1)(n+1)=(n-1) n(n+1)$, so $n^{3}-n$ is a product of 3 consecutive integers, and so, by the above, it is divisible by 3 .
Now given n odd, we may write $n=2 q+1$, and then $(n-1) n(n+1)=$ $2 q(2 q+1)(2 q+2)=4(2 q+1) q(q+1)$, and by the first part of the question $q(q+1)$ is even, so $n^{3}-n$ is divisible by 8 .
Thus $n^{3}-n$ is divisible by 8 and 3 , and hence by 24. (see cor.1.7).

