QUESTION

What are the possible remainders when the fourth power of an integer is divided by 5 ?
ANSWER
Given integers m and n, we may divide n by m and get $n=q m+r$, with $0 \leq r<m$. If we raise this equation to the power k and use the binomial theorem we get
$n^{k}=(q m+r)^{k}=(q m)^{k}+\binom{k}{1}(q m)^{k-1} r+\ldots+\binom{k}{k-1}(q m) r^{k-1}+r^{k}$.
and m divides every term on the right hand side except the last. Thus n^{k} and r^{k} have the same remainder om division by m.
Now for our particular case, $m=5, k=4$ and the possible remainders are $0,1,2,3,4$. The remainders on dividing $0^{4}=0,1^{4}=1,2^{4}-16,3^{4}=81$ and $4^{4}=256$ by 5 are $0,1,1,1,1$ respectively, and so it follows that for any n, n^{4} has remainder 0 or 1 on division by 5 .
[Revision note: A much more rapid proof follows by using Fermat's Little Theorem- $\S 4$ of this course.]

