QUESTION

What are the possible remainders when the fourth power of an integer is divided by 5?

ANSWER

Given integers m and n, we may divide n by m and get n = qm + r, with $0 \le r < m$. If we raise this equation to the power k and use the binomial theorem we get

$$n^{k} = (qm+r)^{k} = (qm)^{k} + \binom{k}{1} (qm)^{k-1}r + \ldots + \binom{k}{k-1} (qm)r^{k-1} + r^{k}.$$

and m divides every term on the right hand side except the last. Thus n^k and r^k have the same remainder om division by m.

Now for our particular case, m = 5, k = 4 and the possible remainders are 0,1,2,3,4. The remainders on dividing $0^4 = 0$, $1^4 = 1$, $2^4 - 16$, $3^4 = 81$ and $4^4 = 256$ by 5 are 0,1,1,1,1 respectively, and so it follows that for any n, n^4 has remainder 0 or 1 on division by 5.

[Revision note: A much more rapid proof follows by using Fermat's Little Theorem-§4 of this course.]