CONTINUED FRACTIONS SYMMETRIC CONTINUED FRACTIONS

Let
$$[a_0, \ldots, a_n] = \frac{p_n}{q_n}$$

Then

$$p_{n} = a_{n}p_{n-1} + p_{n-1} \ 0 < p_{n-2} < p_{n-1}$$

$$p_{n-1} = a_{n-1}p_{n-2} + p_{n-3} \ 0 < p_{n-1} < p_{n-2}$$

$$\vdots$$

$$p_{2} = a_{2}p_{1} + p_{0}$$

$$p_{1} = a_{1}p_{0} + 1 \ (p_{0} = a_{0})$$

$$p_{0} = a_{0}.1$$

This is the Euclidean algorithm for (p_n, p_{n-1}) So $\frac{p_n}{p_n-1} = [a_n, \dots, a_o]$ - the reverse of $\frac{p_n}{q_n}$ Also

$$q_{n} = a_{n}q_{n-1} + q_{n-2}$$

$$q_{n-1} = a_{n-1}q_{n-2} + q_{n-3}$$

$$\vdots$$

$$q_{2} = a_{2}q_{1} + 1 \ q_{0} = 1$$

$$q_{1} = a_{1}.1$$

Again this is the Euclidean Algorithm so $\frac{q_n}{q_{n-1}} = [a_n, \dots, a_1]$

Now suppose we have a symmetric continuous function $[a_0, a_1, a_2, \dots, a_2, a_1, a_0]$ what can we say about the rational it gives rise to.

Theorem

A necessary and sufficient condition that an irreducible rational $\frac{P}{Q}$ (P > Q >

1) should have a symmetric continued function with an even number of a_i 's is that $Q^2 + 1$ should be divisible by P.

A necessary and sufficient condition that an irreducible rational $\frac{P}{Q}$ (P > Q >

1) should have a symmetric continued function with an odd number of a_i 's is that $Q^2 - 1$ should be divisible by P.

Proof

Necessity

Suppose $\frac{P}{Q} = [a_0, a_1, \dots a_1, a_0] = \frac{p_n}{q_n}$ with n+1 entries. Since (P, Q) = 1, $P = p_n$ and $Q = q_n$. Because of symmetry

$$\frac{p_n}{q_n} = \frac{p_n}{p_{n-1}},$$

so $q_n = p_{n-1}$.

From the equation $p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1}$ we have

$$Pq_{n-1} - (q_n)^2 = (-1)^{n-1}$$

$$P.q_{n-1} = Q^2 + (-1)^{n-1}$$

so $Q^2 + (-1)^{n-1}$ is divisible by P.

Sufficiency

Suppose $Q^2 + \varepsilon = PQ' \ \varepsilon = \pm 1 \ Q' \in N$

Expand $\frac{P}{Q}$ as a continued fraction

$$\frac{P}{Q} = [a_0, \dots, a_n] = \frac{p_n}{q_n}$$

where n is chosen so that $(-1)^{n-1} = \varepsilon$. This is possible because of the ambiguity at the end of a finite continued fraction. Now (P,Q) = 1 so

$$P = p_n \ Q = q_n$$
 and so $q_n^2 + \varepsilon = p_n Q'$ also $q_n p_{n-1} + (-1)^{n-1} = p_n q_{n-1}$

Subtracting gives $q_n(q_n - p_{n-1}) = p_n(Q' - q_{n-1})$

Hence $q_n - p_{n-1}$ is divisible by p_n since $(p_n, q_n) = 1$.

But $p_n > q_n > 0$ and $p_n > p_{n-1} > 0$

so $p_n > |q_n - p_{n-1}|$

So, since $p_n|q_n-p_{n-1}$, $q_n-p_{n-1}=0$ so $\frac{p_n}{q_n}=[a_0,\ldots a_n]=\frac{p_n}{p_{n-1}}$ but $\frac{p_n}{p_{n-1}}=[a_n,\ldots,a_0]$. So the continued fraction is symmetric.