CONTINUED FRACTIONS

Continued functions are related to the Euclidean algorithm. For example $\frac{10}{7}$

$$
\begin{aligned}
10 & =1.7+3 \\
7 & =2.3+1 \\
3 & =3.1
\end{aligned}
$$

can be written as

$$
\frac{10}{7}=1+\frac{3}{7} \quad \frac{7}{3}=2+\frac{1}{3}
$$

so

$$
\frac{10}{7}=1+\frac{1}{2+\frac{1}{3}}
$$

We can generalise steps like this, so that instead of taking a rational number like $\frac{10}{7}$ we could take an irrational number α, and write

$$
\begin{gathered}
\alpha=a_{0}+\frac{1}{\alpha_{1}}, \quad a_{0}=[\alpha], \alpha_{1}>1 \\
\alpha_{1}=a_{1}+\frac{1}{\alpha_{2}}
\end{gathered}
$$

etc.
For example

$$
\begin{gathered}
\sqrt{6}=2+(\sqrt{6}-2) \\
\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{2}=2+\frac{\sqrt{6}-2}{2} \\
\frac{2}{\sqrt{6}-2}=2 \cdot \frac{\sqrt{6}+2}{2}=\sqrt{6}+2=4+(\sqrt{6}-2)
\end{gathered}
$$

the process then repeats.
So

$$
\sqrt{6}=2+\frac{1}{2+\frac{1}{4+\frac{1}{2+\frac{1}{4+\underline{1}}}}}
$$

Periodic from the first step onwards.

We clearly nee a better notation. Several have been in use over the years.

$$
\begin{aligned}
\sqrt{6} & =2 . \& \frac{1}{2 .} \& \frac{1}{4 .} \& \frac{1}{2 .} \& \frac{1}{4 .} \& \ldots \\
& =2+\frac{1}{2+} \frac{1}{4+} \frac{1}{2+} \cdots \\
& =[2 ; 2,4,2,4 \ldots] \\
& =[2 ; 2,4]
\end{aligned}
$$

To work with continued functions I need to establish some fundamental formulae.
Consider the continued function

$$
a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \ldots
$$

where the a_{i} for the present could be thought of as variables (real, complex...). If we consider the finite fraction

$$
a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}} \cdots \frac{1}{a_{n}}
$$

this will be a rational function in the variables, which we shall write as $\frac{p_{n}}{q_{n}}$. Evaluating the first few values
$a_{0}=\frac{p_{0}}{q_{0}}$ so $p_{0}=a_{0}, q_{0}=1$
$a_{0}+\frac{1}{a_{1}}=\frac{a_{0} a_{1}+1}{a_{1}}$ so $p_{1}=a_{0} a_{1}+1 q_{1}=a_{1}$

$$
\begin{array}{r}
a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}}=\frac{a_{0} a_{1} a_{2}+a_{0}+a_{2}}{a_{1} a_{2}+1}=\frac{p_{2}}{q_{2}} \\
a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \frac{1}{a_{3}}= \\
=\frac{a_{0} a_{1} a_{2} a_{3}+a_{0} a_{3}+a_{2} a_{3}+a_{0} a_{1}+1}{a_{1} a_{2} a_{3}+a_{3}+a_{1}} \\
=\frac{a_{3}\left(a_{0} a_{1} a_{2}+a_{0}+a_{2}\right)+a_{0} a_{1}+1}{a_{3}\left(a_{1} a_{2}+1\right)+a_{1}}=\frac{p_{3}}{q_{3}}
\end{array}
$$

so $p_{3}=a_{3} p_{2}+p_{1} q_{3}=a_{3} q_{2}+q_{1}$
This pattern generalises, and we have

$$
\begin{aligned}
p_{n+1} & =a_{n+1} p_{n}+p_{n-1} \\
q_{n+1} & =a_{n+1} q_{n}+q_{n-1}
\end{aligned}
$$

Proof By induction

$$
\frac{p_{n}}{q_{n}}=a_{0}+\frac{1}{a_{1}+} \frac{1}{a_{2}+} \cdots \frac{1}{a_{n}}=\frac{a_{n} p_{n}-1+p_{n-2}}{a_{n} q_{n-1}+q_{n-2}}
$$

Now if we replace a_{n} by $a_{n}+\frac{1}{a_{n+1}}$ we obtain $\frac{p_{n+1}}{q_{n+1}}$
so

$$
\begin{aligned}
\frac{p_{n+1}}{q_{n+1}} & =\frac{\left(a_{n}+\frac{1}{a_{n+1}}\right) p_{n-1}+p_{n-2}}{\left(a_{n}+\frac{1}{a_{n+1}}\right) q_{n-1}+q_{n-2}} \\
& =\frac{a_{n} p_{n-1}+p_{n-2}+\frac{p_{n-1}}{a_{n+1}}}{a_{n} q_{n-1}+q_{n-1}+\frac{q_{n-1}}{a_{n+1}}} \\
& =\frac{a_{n+1} p_{n}+p_{n-1}}{a_{n+1} q_{n}+q_{n-1}}
\end{aligned}
$$

The formulae we developed initially gives
$n=2 \quad p_{2}=a_{2} p_{1}+p_{0}, q_{2}=a_{2} q_{1}+q_{0}$
$n=1$ would read $p_{1}=a_{1} p_{0}+p_{-1}, q_{1}=a_{1} q_{0}+q_{-1}$
Now this requires

$$
\begin{aligned}
a_{0} a_{1}+1 & =a_{1} a_{0}+p_{-1}, p_{-1}=1 \\
a_{1} & =a_{1} \cdot 1+q_{-1}, q_{-1}=0
\end{aligned}
$$

So if we conventionally set $p_{-1}=1 q_{-1}=0$ then these formulae are fine for $n=1,2, \ldots$.
If the a_{i} are positive integers we can use these recurrence relations to work out $\frac{p_{n}}{q_{n}}$ successively, without having to "add up from the back end" each time. eg. $3+\frac{1}{7+} \frac{1}{15+} \frac{1}{1+} \frac{1}{292+} \frac{1}{1+} \cdots$

n	-1	0	1	2	3	4	5
a_{n}		3	7	15	1	292	1
p_{n}	1	3	22	333	355	103933	104288
q_{n}	0	1	7	105	113	33102	33215

Now as a decimal $\pi=3.141592653897932 \ldots$

$$
\begin{array}{ccc}
\frac{p_{n}}{q_{n}} & n=1 & 3 . \\
& n=2 & 3.142857 \ldots \\
& n=3 & 3.14150943 \ldots \\
& n=4 & 3.14159292 \ldots \\
& n=5 & 3.14159265301 \ldots
\end{array}
$$

Since the a_{i} are positive integers, we have

$$
p_{n} \geq p_{n-1}+p_{n-2}, \quad q_{n} \geq q_{n-1}+q_{n-1}
$$

with equality if and only if $a_{n}=1$
The minimum possible values for q_{n} and p_{n} therefore occur if all the a_{n} 's are 1.

In that case
$p_{-1}=1, p_{0}=1$ and $p_{n}=p_{n-1}+p_{n-1}$
$q_{0}=1$ and $q_{1}=1$ and $q_{n}=q_{n-1}+q_{n-2}$
So q_{n} is the nth term in the Fibonacci sequence and p_{n} is the $(n+1)$ th term in the Fibbonacci sequence.
i.e. for $1+\frac{1}{1+} \frac{1}{1+} \frac{1}{1+} \ldots$ we have

n	-1	0	1	2	3	4	5

a_{n}		1	1	1	1	1	1

p_{n}	1	1	2	3	5	8	13

q_{n}	0	1	1	2	3	5	8

$\frac{p_{n}}{q_{n}} \rightarrow$ golden ratio.
If $x=1+\frac{1}{1+} \frac{1}{1+} \ldots$ then (without worrying about convergence) $x=1+\frac{1}{x}$
So $x^{2}-x-1=0, x=\frac{1 \pm \sqrt{5}}{2}$ and $x>0$ so $x=\frac{1+\sqrt{5}}{2}$.
More identities
1.

$$
p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n-1}
$$

2.

$$
p_{n} q_{n-1}-p_{n-2} q_{n}=(-1)^{n} a_{n}
$$

1. Again by induction

$$
\begin{gathered}
p_{n+1} q_{n}-p_{n} q_{n+1} \\
=\left(a_{n} p_{n}+p_{n-1}\right) q_{n}-p_{n}\left(a_{n} q_{n}+q_{n-1}\right) \\
=-\left(p_{n} q_{n-1}-p_{n-1} q_{n}\right) \\
n=1: p_{1} q_{0}-p_{0} q_{1}=\left(a_{0} a_{1}+1\right) \cdot 1-a_{0} \cdot a_{1}=1
\end{gathered}
$$

2.

$$
\begin{aligned}
& p_{n} q_{n-2}-p_{n-2} q_{n} \\
= & \left(a_{n} p_{n-1}+p_{n-2}\right) q_{n-2}-p_{n-2}\left(a_{n} q_{n-1}+q_{n-2}\right) \\
= & a_{n}\left(p_{n-1} q_{n-2}-q_{n-1} p_{n-2}\right)=a_{n}(-1)^{n}
\end{aligned}
$$

by 1 .

These formula can also be written in the form
1.

$$
\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1}}{q_{n} q_{n-1}}
$$

2.

$$
\frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}=\frac{(-1)^{n} a_{n}}{q_{n} q_{n-2}}
$$

Now suppose the a_{n} 's are positive real numbers. For n even, since the q 's are all positive

$$
\frac{p_{n-2}}{q_{n-2}}<\frac{p_{n}}{q_{n}}<\frac{p_{n-1}}{q_{n-1}}
$$

For n odd

$$
\frac{p_{n-1}}{q_{n-1}}<\frac{p_{n}}{q_{n}}<\frac{p_{n-2}}{q_{n-2}}
$$

So this gives

$$
\frac{p_{0}}{q_{0}}<\frac{p_{2}}{q_{2}}<\frac{p_{4}}{q_{4}}<\frac{p_{6}}{q_{6}}<\ldots<\frac{p_{5}}{q_{5}}<\frac{p_{3}}{q_{3}}<\frac{p_{1}}{q_{1}}
$$

