CONTINUED FRACTIONS BEST APPROXIMATIONS

 $\frac{a}{b}$ is said to be a best approximation to α ($\alpha \in Z \ b \in N$) if

$$\left|\alpha - \frac{p}{q}\right| < \left|\alpha - \frac{a}{b}\right| \Rightarrow q > b.$$

We now prove that the convergents to an (irrational) number give a sequence of best approximations.

Note that as in the previous result, we often investigate $|q\alpha - p|$ rather than $\left|\alpha - \frac{p}{q}\right|$. Inequalities involving the former are often a bit stronger the those involving the latter.

Theorem

If $|q\alpha - p| < |q_n\alpha - p_n|$, n > 0 where $\frac{p_n}{q_n}$ is a convergent of the continued fraction for α , then $q > q_n$.

Proof

Assume that $|q\alpha - p| < q_n\alpha - p_n|$ and that $q \leq q_n$. It follows that $q < q_{n+1}$ (n > 0). Consider the equations

$$\begin{array}{rcl} x.p_n+y.p_{n+1} &=& p\\ x.q_n+y.q_{n+1} &=& q \end{array}$$

 $p_n q_{n+1} - p_{n+1} q_n = (-1)^n$, so this pair of equations has integer solutions x, y. Now $y = 0 \Rightarrow p = x p_n q = x q_n$, $x \neq 0$ and so $|q\alpha - p| = |x||q_n \alpha - p_n| \ge |q_n \alpha - p_n|$

If x = 0 then $y \neq 0$ and $q = yq_n$ which contradicts $q \leq q_n$.

So x and y are non-zero.

We now show that x and y are of opposite sign.

$$0 < q = xq_n + yq_{n+1} < q_{n+1}$$

x and y cant both be < 0 as q > 0

x and y cant both be > 0 otherwise > q_{n+1}

Now $q_n \alpha - p_n$ and $q_{n+1}|alpha - p_{n+1}$ have opposite signs, since the convergents alternate either side of α , so $x(q_n \alpha - p_n)$ and $y(q_{n+1}\alpha - p_{n+1})$ have the same sign.

Also

$$q\alpha - p = x(q_n\alpha - p_n) + y(q_{n+1}\alpha - p_{n+1})$$

 \mathbf{SO}

$$|q\alpha - p| = |x(q_n\alpha - p_n)| + |y(q_{n+1}\alpha - p_{n+1})| > |x(q_n\alpha - p_n)| \ge |q_n\alpha - p_n|$$

This contradiction proves the theorem.

This proof goes back to Legendre, and is quoted in Perron. Now $\left| \alpha - \frac{p}{q} \right| < \left| \alpha - \frac{p_n}{q_n} \right|$ and $q \le q_n$ multiplying the inequalities

$$\Rightarrow |q\alpha - p| < |q_n\alpha - p_n| \Rightarrow q > q_n$$

So the convergents are the best approximations to α . But how good are they?

Now we have already seen the equation

$$\alpha - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n(\alpha_{n+1}q_n + q_{n-1})}$$

 \mathbf{SO}

$$\left|alpha - \frac{p_n}{q_n}\right| = \frac{1}{q_n(\alpha_{n+1}q_n + q_{n-1})} \le \frac{1}{q_n(a_{n+1}q_n + q_{n-1})} = \frac{1}{q_nq_{n+1}} < \frac{1}{q_n^2}$$

We already know from Dirichlet's theorem that an irrati0 onal α has infinitely many rational approximations $\frac{p}{q}$ satisfying $\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$. The sequence of convergents supplies such a set.

This does not give them all however. E.g. consider rational approximations to $\frac{779}{207}$

The convergents are

$$3, 4, \frac{15}{4}, \frac{64}{17}, \frac{143}{38}, \frac{779}{207}.$$

$$\frac{779}{207} - \frac{79}{21} = \frac{6}{4347} \approx 1.38 \times 10^{-3}$$
$$\frac{1}{21^2} \approx 2.27 \times 10^{-3}$$

However, notice that $\frac{79}{21} = \frac{15+64}{4+17}$

I shall not pursue this, but instead show that if $\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$ (p,q) = 1 then $\frac{p}{q}$ is one of the convergents of the continued fraction for α . Proof

Suppose not. Then $q_n \leq q \leq q_{n+1}$ determines an integer n, and $|q\alpha - \phi| < |q_n\alpha - p_n|$ is impossible. (The earlier theorem can be improved to $q \geq q_{n+1}$) so $|q_n\alpha - p_n| \leq |q\alpha - p| < \frac{1}{2q}$ i.e $\left|\alpha - \frac{p_n}{q_n}\right| Z < \frac{1}{2qq_n}$ Now

$$\frac{1}{qq_n} \leq \frac{|qp_n - pq_n|}{qq_n} \text{ (even if } q = q_n \frac{p}{q} \neq \frac{p_n}{q_n}\text{)}$$

$$= \left|\frac{p_n}{q_n} - \frac{p}{q}\right|$$

$$\leq \left|\alpha - \frac{p_n}{q_n}\right| + \left|\alpha - \frac{p}{q}\right|$$

$$< \frac{1}{2qq_n} + \frac{1}{2q^2}$$

$$\frac{1}{2qq_n} < \frac{1}{2q^2}$$

so $q < q_n$ This is a contradiction so the theorem is proved. Now of any two successive convergents, at least one satisfies $\left|\alpha - \frac{p}{q}\right| < \frac{1}{2q^2}$ Proof

Since the convergents are alternatively greater and less then x

$$\left|\frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n}\right| = \left|\frac{p_{n+1}}{q_{n+1}} - \alpha\right| + \left|\alpha - \frac{po_n}{q_n}\right|$$

Suppose the result false. Then

$$\frac{1}{2q_{n+1}^2} + \frac{1}{2q_n^2} \leq \left| \frac{p_{n+1}}{q_{n+1}} - \alpha \right| + \left| \alpha - \frac{p_n}{q_n} \right| \\ = \left| \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} \right| \\ = \frac{1}{q_n q_{n+1}}$$

i.e. $\left(\frac{1}{q_{n+1}} - \frac{1}{q_n}\right)^2 \leq 0$ i.e. $q_{n+1} = q_n$. This is true only if n = 1 $a_1 = 1$ $q_1 = q_0 = 1$. Otherwise $q_{n+1} > q_n$. Even in this case

$$0 < \frac{p_1}{q_1} - x = 1 - \frac{1}{1 + a_2 + 1} < 1 - \frac{a_2}{a_2 + 1} \le \frac{1}{2}$$

so the theorem is still true. Further, of any three successive convergents, at least one satisfies $\left|\alpha - \frac{p}{q}\right| < 1$ $\frac{1}{q^2\sqrt{5}}$ Proof

$$\left| \alpha - \frac{p_n}{q_n} \right| = \frac{1}{q_n(\alpha_{n+1}q_n + q_{n-1})} = \frac{1}{q_n^2\left(\alpha_{n+1} + \frac{q_{n-1}}{q_n}\right)}$$

Now suppose that

$$\alpha_i + \frac{q_{i-2}}{q_{i-1}} \le \sqrt{5} \text{ for } i = n-1, n, n+1$$

Then

$$\alpha_{n-1} = a_{n-1} + \frac{1}{\alpha_n}$$
 and $\frac{q_{n-1}}{q_{n-2}} = a_{n-1} + \frac{q_{n-3}}{q_{n-2}}$

 \mathbf{SO}

$$\frac{1}{\alpha_n} + \frac{q_{n-1}}{q_{n-2}} = \alpha_{n-1} + \frac{q_{n-3}}{q_{n-2}} \le \sqrt{5}$$

by assumption and

$$1 = \alpha_n \frac{1}{\alpha_n} \le \left(\sqrt{5} + \frac{q_{n-2}}{q_{n-1}}\right) \left(\sqrt{5} - \frac{q_{n-1}}{q_{n-2}}\right)$$
$$= 5 + 1 - \sqrt{5} \left(\frac{q_{n-2}}{q_{n-1}} + \frac{q_{n-1}}{q_{n-2}}\right)$$

giving $\frac{q_{n-2}}{q_{n-1}} + \frac{q_{n-1}}{q_{n-2}} \le \sqrt{5}$ In fact since LHS is rational we have strictly less then, so

$$\left(\frac{q_{n-1}}{q_{n-1}}\right)^2 - \left(\frac{q_{n-2}}{q_{n-1}}\right)\sqrt{5} + 1 < 0 \left(\frac{q_{n-2}}{q_{n-1}} - \frac{1}{2}\sqrt{5}\right)^2 < \frac{1}{4} \text{ i.e.} \frac{q_{n-2}}{q_{n-1}} > \frac{1}{2}(\sqrt{5} - 1)$$

This has used i = n - 1, n. Using 1 = n, n + 1 gives

$$\frac{q_{n-1}}{q_n} > \frac{1}{2}(\sqrt{5}-1)$$

Now $q_n = a_n q_{n-1} + q_{n-2}$

$$a_n = \frac{q_n}{q_{n-1}} - \frac{q_{n-2}}{q_{n-1}} < \frac{2}{\sqrt{5}-1} - \frac{1}{2}(\sqrt{5}-1) = 1$$

 $a_n < 1$ is a contradiction. Now let $\alpha = \frac{1}{2}(\sqrt{5} - 1) = [0, 1, 1, 1, ...]$ Suppose that there are an infinite number of solutions of

$$\left| \alpha - \frac{p}{q} \right| < \frac{1}{Aq^2} \ A > \sqrt{5}$$

 $\begin{array}{l} \alpha = \frac{p}{q} + \frac{\delta}{q^2} \text{ where } |\delta| < \frac{1}{A} < \frac{1}{\sqrt{5}} \\ \text{Then } \frac{\delta}{q} = q\alpha - p \text{ and} \end{array}$

$$\frac{\delta}{q} - \frac{1}{2}q\sqrt{5} = q\left(\frac{1}{2}\sqrt{5} - 1\right) - p - \frac{1}{2}q\sqrt{5} = -\frac{1}{2}q - p$$

 \mathbf{SO}

$$\left(\frac{\delta}{q}\right)^2 - \delta\sqrt{5} + \frac{5}{4}q^2 = \left(\frac{1}{2}q + p\right)^2$$

 \mathbf{SO}

$$\left(\frac{\delta}{q}\right)^2 - \delta\sqrt{5} = p^2 p q - q^2$$

when q is large, since $|\delta|\sqrt{5} < 1$ the LHS is between -1 and +1 whereas RHS is an integer.

So $p^2 + pq - q^2 = 0$ i.e. $(2p + q)^2 = 5q^2$ which is impossible for integers p and q. So $\frac{1}{\sqrt{5}}$ is the best possible. This establishes Hurwitz theorem.

We now investigate for which numbers $\sqrt{5}$ is best possible. It turns out that the criterion is that these numbers should end in an infinite tail of 1's. We generalise this.

Definition

Two irrational numbers α and β are equivalent if they have the same tail to their continued fraction, in the sense that

$$\alpha = [a_0; a_1, \dots, a_k, c_0, c_1 c_2 \dots]$$

$$\beta = [b_0; b_1, \dots, b_j, c_0, c_1, c_2 \dots]$$

Theorem

Two irrational numbers α and β are equivalent if and only if there exist integers a, b, c, d with $ad - bc = \pm 1$ such that

$$\alpha = \frac{A\beta + B}{C\beta + D}$$

Lemma

if $x = \frac{P\xi + R}{Q\xi + S}$ where $\xi > 1$, $PS - RQ = \pm 1$, and Q > S > 0 then $\frac{r}{S}$ and $\frac{P}{Q}$ are two consecutive convergents to the continued function for x. If $\frac{R}{S}$ is the (n-1)th, $\frac{P}{Q}$ is the *n*th and ξ is the (n-1)th complete quotient. Proof

$$\frac{P}{Q} = [a_0, a_1, \dots, a_n] = \frac{p_n}{q_n}$$

n can be even or odd. Choose it so that $PS - QR = (-1)^{n-1}$ (p,q) = 1 so $P = p_n Q = q_n$ so $p_n S - q_n R = (-1)^{n-1} = p_n q_{n-1} - p_{n-1} q_n$ so $p_n (S - q_{n-1}) = q_n (R - p_{n-1})$ so $q_n | S - q_{n-1}$ since $(p_n, q_n) = 1$. Now

$$q_n = Q > S > 0$$

$$q_n \ge q_{n-1} > 0 \text{ so}$$

$$q_n > |S - q_{n-1}|$$

Hence $S - q_{n-1} = 0$ and so $R - p_{n-1} = 0$ thus $\frac{R}{S} = \frac{p_{n-1}}{q_{n-1}}$ and $x = \frac{p_n \xi + p_{n-1}}{q_n \xi + q_{n-1}}$ i.e.

$$x = [a_0, a_1, \dots, a_n, \xi] = [a_0, a_1, \dots, a_n, c_0, c_1]$$

where $\xi = [c_0; c_1, c_2...]$ and $c_0 \neq 0$ as $\xi > 1$ and so ξ is the n + 1th complete quotient.

Proof of theorem

Suppose $\alpha = [a_0, \dots a_k, c_0, c_1 \dots] = [a_0, \dots a_k, w]$ $\beta = [b_0, \dots b_j, c_o, c_1 \dots] = [b_0, \dots b_j, w]$ then

$$\alpha = \frac{p_k w + p_{k-1}}{q_k w + q_{k-1}} \qquad p_k q_{k-1} - p_{k-1} q_k = \pm 1$$

$$\beta = \frac{p'_{j}w + p'_{j-1}}{q'_{j}w + q'_{j-1}} \qquad p'_{j}q'_{j-1} - p'_{j-1}q;_{j} = \pm 1$$

eliminating w will give

$$\alpha = \frac{A\beta + B}{C\beta + D}$$
 where $AD - BC = \pm 1$.

Now suppose

$$\alpha = \frac{A\beta + B}{C\beta + D} AD - BC = \pm 1$$

assume w.l.o.g. $C\beta + D > 0$. Let $\beta = [b_0, \dots b_{k-1}\beta_k] = \frac{p_{k-1}\beta_k + p_{k-2}}{q_{k-1}\beta_k + q_{k-2}}$ substituting fo β in $\alpha = \frac{A\beta + B}{C\beta + D}$ gives

$$\alpha = \frac{P\beta_K + R}{q\beta_k + s}$$

where

$$P = Ap_{k-1} + Bq_{k-1}$$

$$R = Ap_{k-2} + Bq_{k-2}$$

$$Q = Cp_{k-1} + Dq_{k-1}$$

$$S = Cp_{k-2} + Dq_{k-2}$$

So $P, Q, R, S \in \mathbb{Z}$ and

$$PS_QR = (AD - BC)(p_{k-1}q_{k-2} - p_{k-1}q_{k-1}) = \pm 1$$
$$- \frac{p_{k-1}}{q_{k-1}} \left| < \frac{1}{q_{k-1}^2} \text{ and } \left| \beta - \frac{p_{k-2}}{q_{k-2}} \right| < \frac{1}{q_{k-2}^2}$$

 \mathbf{SO}

Now $|\beta|$

$$p_{k-1} = q_{k-1}\beta + \frac{\varepsilon}{q_{k-1}}; p_{k-1} = q_{k-1}\beta + \frac{\varepsilon'}{q_{k-1}}$$

where $|\varepsilon| < 1$ and $|\varepsilon'| < 1$. So

$$Q = (C\beta + D)q_{k-1} + \frac{C\varepsilon}{q_{k-1}}$$
$$S = (C\beta + D)q_{k-2} + \frac{C\varepsilon'}{q_{k-2}}$$

Now $C\beta + D > 0$ and $q_{k-1} > q_{k-1}$ also $q_n \to \infty$ as $n \to \infty$. So provided k is sufficiently large, Q > S > 0For such k, $\alpha = \frac{P\beta_k + R}{Q\beta_k + S} PS - QR = \pm 1, Q > S > 0$ so β_k is a complete quotient in the continued fraction for α by the lemma thus $\alpha = [a_0; a_1, \ldots a_m, b_k, b_{k+1} \ldots]$ i.e. α is equivalent to β . We now define the Markov constant of an irrational number α by

$$M(\alpha) = \sup\left\{\lambda : \left|\alpha - \frac{p}{q}\right| < \frac{1}{\lambda q^2} \text{ has infinitely many solutions } \frac{p}{q}\right\}$$

So Huzwitz theorem says $\forall \alpha \ M(\alpha \ge \sqrt{5} \text{ and } M\left(\frac{1+\sqrt{5}}{2}\right) = \sqrt{5}.$ We now extend this : Theorem

If α is equivalent to β then $M(\alpha) = M(\beta)$. If α is not equivalent to $\frac{1+\sqrt{5}}{2}$ then $M(\alpha) \ge \sqrt{8}$. If α is equivalent to $1 + \sqrt{2}$ then $M(\alpha) = \sqrt{8}$. Proof

Recall that

$$\begin{vmatrix} \alpha - \frac{p_k}{q_k} \end{vmatrix} = \frac{1}{q_k(q_k\alpha_{k+1} + q_{k-1})} \\ = \frac{1}{q_k^2\left(\alpha_{k+1} + \frac{q_{k-1}}{q_k}\right)}$$

Thus

$$M(\alpha) = \lim_{k \to \infty} \sup\left(\alpha_{k+1} + \frac{q_{k-1}}{q_k}\right)$$

Recall from the discussion of symmetric continued fractions that

$$\frac{q_k}{q_{k-1}} = [a_k; a_{k-1}, \dots a_1]$$

 \mathbf{SO}

$$\frac{q_{k-1}}{q_k} = [0; a_k a_{k-1} \dots a_1]$$

 \mathbf{SO}

$$M(\alpha) = \lim_{k \to \infty} \sup\left([0; a_k, a_{k-1}, \dots a_1] + \alpha_{k+1} \right)$$

Now if α is equivalent to β then $\beta_j = \alpha_k$ and $b_j = a_k$ for all sufficiently large k and j for which j - k has a suitable fixed value h.

If the convergents of β are $\frac{P_j}{Q_j}$ then for j and k differing by h, the continued fractions for $\frac{q_{k-1}}{q_k}$ and $\frac{Q_{j-1}}{Q_j}$ have rhe same partial quotients at the beginning, and the length of agreement can be made large by making j and k sufficiently large.

Suppose $\frac{q_{k-1}}{q_k}$ and $\frac{Q_{j-1}}{Q_j}$ agree in the first l_1 partial quotients, and denote the common convergents by $\frac{r_i}{s_i}$ (i = 0, ..., l) so

$$\frac{q_{k-1}}{q_k} = \frac{r_{l-1}x_l + r_{l-2}}{s_{l-1}x_l + s_{l-2}}$$

and

$$\frac{Q_{j-1}}{Q_j} = \frac{r_{l-1}y_l + r_{l-2}}{s_{l-1}y_l + s_{l-2}}$$

Then $[x_l] = [y_l] = \text{common } l + 1\text{th partial quotient so } |x_l - y_l| \le 1$. Then we have

$$\left|\frac{q_{k-1}}{q_k} - \frac{Q_{j-1}}{Q_j}\right| = \frac{|x_l - y_l|}{(s_{l-1}x_l + s_{l-2})(s_{l-1}y_l + s_{l-1})} \le \frac{1}{s_{l-1}^2}$$

Now provided j and k are large enough, we have

$$\left|\frac{q_{k-1}}{q_k} - \frac{Q_{j-1}}{Q_j}\right| < \varepsilon$$

since $s_{l-1} \ge (l-1)$ th term in Fibonacci sequence. Also for large $j, k \alpha_k = \beta_j$, so

$$\left(\alpha_k + \frac{q_{k-1}}{q_k}\right) - \left(\beta_j + \frac{Q_{j-1}}{Q_j}\right) = \frac{q_{k-1}}{q_k} - \frac{Q_{j-1}}{Q_j} \to 0 \text{ as } j, k \to \infty, \ j-k = h$$

Thus $M(\alpha) = M(\beta)$

If α is not equivalent to $\frac{\sqrt{5}+1}{2}$ then infinitely many of the a_k are ≥ 2 . If $a_k \geq 3$ for infinitely many k then

$$M(\alpha) = \lim \sup \left(\alpha_{k+1} + \frac{q_{k-1}}{q_k} \right)$$

$$\geq \lim \sup(a_{k+1}) \geq 3$$

So suppose that the a_k contain only 1's and 2's from some point on. Case I

 $a_k = 2$ from some point on. Then α is equivalent to $1 + \sqrt{2} = [2; 2, 2, \ldots]$

$$M(\alpha) = \lim \sup \left(\alpha_{k+1} + \frac{q_{k-1}}{q_k}\right)$$

$$\alpha_{k+1} = [2; 2, \ldots] = 1 + \sqrt{2}$$

$$\frac{q_{k-1}}{q_k} = [0; \underbrace{2, 2, \ldots}_{k \text{ times}}] \rightarrow \frac{1}{1 + \sqrt{2}} \text{ as } k \rightarrow \infty$$

So $M(\alpha) = 1 + \sqrt{2} + \frac{1}{1+\sqrt{2}} = \sqrt{8}$ Case II

Suppose thee are infinitely many 1's and 2's.

Then there are infinitely many k such that $a_k = 1$ and $a_{k+1} = 2$, so

$$\alpha_{k+1} = 2 + \frac{1}{a_{k+2} + \frac{1}{a_{k+3}}} \ge 2 + \frac{1}{2 + \frac{1}{1}} = \frac{7}{3}$$

$$\frac{q_{k-1}}{q_k} = \frac{1}{a_k + \frac{1}{a_{k-1} + \dots}} \ge \frac{1}{1 + \frac{1}{a_{k-1}}} \ge \frac{1}{1 + \frac{1}{1}} = \frac{1}{2}$$

So $M(\alpha) \ge \frac{7}{3} + \frac{1}{2} = \frac{17}{6} > \sqrt{8}$ Note: This shows that if $\alpha \not\sim 1 + \sqrt{2}$ then $M(\alpha) \ge \frac{17}{6}$. Theorem There are uncountably many α with $M(\alpha) = 3$ Proof Let $\alpha = [\underbrace{1; 1, 1, \dots, 1}_{r_1}, 2, 2, \underbrace{1, 1, \dots, 1}_{r_2}, 2, 2, \underbrace{1, 1, \dots, 1}_{r_3}, 2, 2, 1, \dots] r_1 < r_2 < r_3$ (i) If $a_{k+1} = 1$ then $\alpha_{k+1} < 2$ and since $\frac{q_{k-1}}{q_k} < 1$, $\alpha_{k+1} + \frac{q_{k-1}}{q_k} < 3$.

(ii) If $a_{k+1} = 2$ and $a_{k+1} = 2$ then

$$\alpha_{k+1} + \frac{q_{k-1}}{q_k} = \left(2 + \frac{1}{2+1} + \frac{1}{1+1} + \dots\right) + \left(\frac{1}{1+1} + \frac{1}{1+1} + \dots + \frac{1}{1}\right)$$

If k is large the sequences of 1's can be made as long as we like before a 2 appears. So $\alpha_{k+1} + \frac{q_{k-1}}{q_k} \to 2 + \frac{1}{2 + \frac{\sqrt{5}-1}{2}} + \frac{\sqrt{5}-1}{2} = 3$

(iii) If $a_{k+1} = 2$ and $a_k = 1$ then

$$\alpha_{k+1} + \frac{q_{k-1}}{q_k} = \left(2 + \frac{1}{1+1} + \dots\right) + \left(\frac{1}{2+1} + \frac{1}{1+1} + \dots + \frac{1}{1}\right) \to 2 + \frac{1}{\frac{\sqrt{5}+1}{2}} + \frac{1}{2 + \frac{\sqrt{5}-1}{2}} = 3$$

So $M(\alpha) = \lim \sup \left(\alpha_{k+1} + \frac{q_{k-1}}{q_k}\right) = 3$ Two such α 's are equivalent iff their associated sequences of r_i 's are equivalent in the same sense of having equal tails. There are uncountably many inequivalent such sequences of r_i 's so uncountably many inequivalent α with $M(\alpha) = 3.$