CONTINUED FRACTIONS

 BEST APPROXIMATIONS$\frac{a}{b}$ is said to be a best approximation to $\alpha(\alpha \in Z b \in N)$ if

$$
\left|\alpha-\frac{p}{q}\right|<\left|\alpha-\frac{a}{b}\right| \Rightarrow q>b
$$

We now prove that the convergents to an (irrational) number give a sequence of best approximations.
Note that as in the previous result, we often investigate $|q \alpha-p|$ rather than $\left|\alpha-\frac{p}{q}\right|$. Inequalities involving the former are often a bit stronger the those involving the latter.
Theorem
If $|q \alpha-p|<\left|q_{n} \alpha-p_{n}\right|, \quad n>0$ where $\frac{p_{n}}{q_{n}}$ is a convergent of the continued fraction for α, then $q>q_{n}$.
Proof
Assume that $|q \alpha-p|<q_{n} \alpha-p_{n} \mid$ and that $q \leq q_{n}$. It follows that $q<$ $q_{n+1}(n>0)$. Consider the equations

$$
\begin{aligned}
& x \cdot p_{n}+y \cdot p_{n+1}=p \\
& x \cdot q_{n}+y \cdot q_{n+1}=q
\end{aligned}
$$

$p_{n} q_{n+1}-p_{n+1} q_{n}=(-1)^{n}$, so this pair of equations has integer solutions x, y. Now $y=0 \Rightarrow p=x p_{n} q=x q_{n}, x \neq 0$ and so $|q \alpha-p|=|x|\left|q_{n} \alpha-p_{n}\right| \geq$ $\left|q_{n} \alpha-p_{n}\right|$
If $x=0$ then $y \neq 0$ and $q=y q_{n}$ which contradicts $q \leq q_{n}$.
So x and y are non-zero.
We now show that x and y are of opposite sign.

$$
0<q=x q_{n}+y q_{n+1}<q_{n+1}
$$

x and y cant both be <0 as $q>0$
x and y cant both be >0 otherwise $>q_{n+1}$
Now $q_{n} \alpha-p_{n}$ and $q_{n+1} \mid a l p h a-p_{n+1}$ have opposite signs, since the convergents alternate either side of α, so $x\left(q_{n} \alpha-p_{n}\right)$ and $y\left(q_{n+1} \alpha-p_{n+1}\right)$ have the same sign.
Also

$$
q \alpha-p=x\left(q_{n} \alpha-p_{n}\right)+y\left(q_{n+1} \alpha-p_{n+1}\right)
$$

so

$$
\begin{aligned}
|q \alpha-p| & =\left|x\left(q_{n} \alpha-p_{n}\right)\right|+\left|y\left(q_{n+1} \alpha-p_{n+1}\right)\right| \\
& >\left|x\left(q_{n} \alpha-p_{n}\right)\right| \geq\left|q_{n} \alpha-p_{n}\right|
\end{aligned}
$$

This contradiction proves the theorem.
This proof goes back to Legendre, and is quoted in Perron.
Now $\left|\alpha-\frac{p}{q}\right|<\left|\alpha-\frac{p_{n}}{q_{n}}\right|$
and $q \leq q_{n}$ multiplying the inequalities

$$
\Rightarrow|q \alpha-p|<\left|q_{n} \alpha-p_{n}\right| \Rightarrow q>q_{n}
$$

So the convergents are the best approximations to α. But how good are they?
Now we have already seen the equation

$$
\alpha-\frac{p_{n}}{q_{n}}=\frac{(-1)^{n}}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)}
$$

so

$$
\mid \text { alph } a-\frac{p_{n}}{q_{n}} \left\lvert\,=\frac{1}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)} \leq \frac{1}{q_{n}\left(a_{n+1} q_{n}+q_{n-1}\right)}=\frac{1}{q_{n} q_{n+1}}<\frac{1}{q_{n}^{2}}\right.
$$

We already know from Dirichlet's theorem that an irrati0onal α has infinitely many rational approximations $\frac{p}{q}$ satisfying $\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}$.
The sequence of convergents supplies such a set.
This does not give them all however. E.g. consider rational approximations to $\frac{779}{207}$
The convergents are

$$
\begin{aligned}
& 3,4, \frac{15}{4}, \frac{64}{17}, \frac{143}{38}, \frac{779}{207} . \\
& \frac{779}{207}-\frac{79}{21}=\frac{6}{4347} \approx 1.38 \times 10^{-3} \\
& \frac{1}{21^{2}} \approx 2.27 \times 10^{-3}
\end{aligned}
$$

However, notice that $\frac{79}{21}=\frac{15+64}{4+17}$
I shall not pursue this, but instead show that if $\left|\alpha-\frac{p}{q}\right|<\frac{1}{2 q^{2}}(p, q)=1$ then $\frac{p}{q}$ is one of the convergents of the continued fraction for α.
${ }_{P}^{q}$ Proof

Suppose not. Then $q_{n} \leq q \leq q_{n+1}$ determines an integer n, and $|q \alpha-\phi|<$ $\left|q_{n} \alpha-p_{n}\right|$ is impossible. (The earlier theorem can be improved to $q \geq q_{n+1}$) so $\left|q_{n} \alpha-p_{n}\right| \leq|q \alpha-p|<\frac{1}{2 q}$
i.e $\left|\alpha-\frac{p_{n}}{q_{n}}\right| Z<\frac{1}{2 q q_{n}}$

Now

$$
\begin{aligned}
\frac{1}{q q_{n}} & \leq \frac{\left|q p_{n}-p q_{n}\right|}{q q_{n}}\left(\text { even if } q=q_{n} \frac{p}{q} \neq \frac{p_{n}}{q_{n}}\right) \\
& =\left|\frac{p_{n}}{q_{n}}-\frac{p}{q}\right| \\
& \leq\left|\alpha-\frac{p_{n}}{q_{n}}\right|+\left|\alpha-\frac{p}{q}\right| \\
& <\frac{1}{2 q q_{n}}+\frac{1}{2 q^{2}} \\
\frac{1}{2 q q_{n}} & <\frac{1}{2 q^{2}}
\end{aligned}
$$

so $q<q_{n}$ This is a contradiction so the theorem is proved.
Now of any two successive convergents, at least one satisfies $\left|\alpha-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$ Proof
Since the convergents are alternatively greater and less then x

$$
\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n}}{q_{n}}\right|=\left|\frac{p_{n+1}}{q_{n+1}}-\alpha\right|+\left|\alpha-\frac{p o_{n}}{q_{n}}\right|
$$

Suppose the result false. Then

$$
\begin{aligned}
\frac{1}{2 q_{n+1}^{2}}+\frac{1}{2 q_{n}^{2}} & \leq\left|\frac{p_{n+1}}{q_{n+1}}-\alpha\right|+\left|\alpha-\frac{p_{n}}{q_{n}}\right| \\
& =\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n}}{q_{n}}\right| \\
& =\frac{1}{q_{n} q_{n+1}}
\end{aligned}
$$

i.e. $\left(\frac{1}{q_{n+1}}-\frac{1}{q_{n}}\right)^{2} \leq 0$ i.e. $q_{n+1}=q_{n}$. This is true only if $n=1 a_{1}=1 q_{1}=$ $q_{0}=1$. Otherwise $q_{n+1}>q_{n}$.
Even in this case

$$
0<\frac{p_{1}}{q_{1}}-x=1-\frac{1}{1+} \frac{1}{a_{2}+}<1-\frac{a_{2}}{a_{2}+1} \leq \frac{1}{2}
$$

so the theorem is still true.
Further, of any three successive convergents, at least one satisfies $\left|\alpha-\frac{p}{q}\right|<$ $\frac{1}{q^{2} \sqrt{5}}$
Proof

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right|=\frac{1}{q_{n}\left(\alpha_{n+1} q_{n}+q_{n-1}\right)}=\frac{1}{q_{n}^{2}\left(\alpha_{n+1}+\frac{q_{n-1}}{q_{n}}\right)}
$$

Now suppose that

$$
\alpha_{i}+\frac{q_{i-2}}{q_{i-1}} \leq \sqrt{5} \text { for } i=n-1, n, n+1
$$

Then

$$
\alpha_{n-1}=a_{n-1}+\frac{1}{\alpha_{n}} \text { and } \frac{q_{n-1}}{q_{n-2}}=a_{n-1}+\frac{q_{n-3}}{q_{n-2}}
$$

so

$$
\frac{1}{\alpha_{n}}+\frac{q_{n-1}}{q_{n-2}}=\alpha_{n-1}+\frac{q_{n-3}}{q_{n-2}} \leq \sqrt{5}
$$

by assumption and

$$
\begin{aligned}
1 & =\alpha_{n} \frac{1}{\alpha_{n}} \leq\left(\sqrt{5}+\frac{q_{n-2}}{q_{n-1}}\right)\left(\sqrt{5}-\frac{q_{n-1}}{q_{n-2}}\right) \\
& =5+1-\sqrt{5}\left(\frac{q_{n-2}}{q_{n-1}}+\frac{q_{n-1}}{q_{n-2}}\right)
\end{aligned}
$$

giving $\frac{q_{n-2}}{q_{n-1}}+\frac{q_{n-1}}{q_{n-2}} \leq \sqrt{5}$
In fact since LHS is rational we have strictly less then, so

$$
\begin{aligned}
\left(\frac{q_{n-1}}{q_{n-1}}\right)^{2}-\left(\frac{q_{n-2}}{q_{n-1}}\right) \sqrt{5}+1 & <0 \\
\left(\frac{q_{n-2}}{q_{n-1}}-\frac{1}{2} \sqrt{5}\right)^{2} & <\frac{1}{4} \text { i.e. } \\
\frac{q_{n-2}}{q_{n-1}} & >\frac{1}{2}(\sqrt{5}-1)
\end{aligned}
$$

This has used $i=n-1, n$. Using $1=n, n+1$ gives

$$
\frac{q_{n-1}}{q_{n}}>\frac{1}{2}(\sqrt{5}-1)
$$

Now $q_{n}=a_{n} q_{n-1}+q_{n-2}$

$$
a_{n}=\frac{q_{n}}{q_{n-1}}-\frac{q_{n-2}}{q_{n-1}}<\frac{2}{\sqrt{5}-1}-\frac{1}{2}(\sqrt{5}-1)=1
$$

$a_{n}<1$ is a contradiction.
Now let $\alpha=\frac{1}{2}(\sqrt{5}-1)=[0,1,1,1, \ldots]$
Suppose that there are an infinite number of solutions of

$$
\left|\alpha-\frac{p}{q}\right|<\frac{1}{A q^{2}} A>\sqrt{5}
$$

$\alpha=\frac{p}{q}+\frac{\delta}{q^{2}}$ where $|\delta|<\frac{1}{A}<\frac{1}{\sqrt{5}}$
Then $\frac{\delta}{q}=q \alpha-p$ and

$$
\frac{\delta}{q}-\frac{1}{2} q \sqrt{5}=q\left(\frac{1}{2} \sqrt{5}-1\right)-p-\frac{1}{2} q \sqrt{5}=-\frac{1}{2} q-p
$$

so

$$
\left(\frac{\delta}{q}\right)^{2}-\delta \sqrt{5}+\frac{5}{4} q^{2}=\left(\frac{1}{2} q+p\right)^{2}
$$

so

$$
\left(\frac{\delta}{q}\right)^{2}-\delta \sqrt{5}=p^{2} p q-q^{2}
$$

when q is large, since $|\delta| \sqrt{5}<1$ the LHS is between -1 and +1 whereas RHS is an integer.
So $p^{2}+p q-q^{2}=0$ i.e. $(2 p+q)^{2}=5 q^{2}$ which is impossible for integers p and q. So $\frac{1}{\sqrt{5}}$ is the best possible. This establishes Hurwitz theorem.
We now investigate for which numbers $\sqrt{5}$ is best possible. It turns out that the criterion is that these numbers should end in an infinite tail of 1's. We generalise this.

Definition

Two irrational numbers α and β are equivalent if they have the same tail to their continued fraction, in the sense that
$\alpha=\left[a_{0} ; a_{1}, \ldots, a_{k}, c_{0}, c_{1} c_{2} \ldots\right]$
$\beta=\left[b_{0} ; b_{1}, \ldots, b_{j}, c_{0}, c_{1}, c_{2} \ldots\right]$
Theorem
Two irrational numbers α and β are equivalent if and only if there exist integers a, b, c, d with $a d-b c= \pm 1$ such that

$$
\alpha=\frac{A \beta+B}{C \beta+D}
$$

Lemma
if $x=\frac{P \xi+R}{Q \xi+S}$ where $\xi>1, P S-R Q= \pm 1$, and $Q>S>0$ then $\frac{r}{S}$ and $\frac{P}{Q}$ are two consecutive convergents to the continued function for x. If $\frac{R}{S}$ is the $(n-1)$ th, $\frac{P}{Q}$ is the nth and ξ is the $(n-1)$ th complete quotient.
Proof

$$
\frac{P}{Q}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=\frac{p_{n}}{q_{n}}
$$

n can be even or odd. Choose it so that $P S-Q R=(-1)^{n-1}$
$(p, q)=1$ so $P=p_{n} Q=q_{n}$
so $p_{n} S-q_{n} R=(-1)^{n-1}=p_{n} q_{n-1}-p_{n-1} q_{n}$
so $p_{n}\left(S-q_{n-1}\right)=q_{n}\left(R-p_{n-1}\right)$
so $q_{n} \mid S-q_{n-1}$ since $\left(p_{n}, q_{n}\right)=1$.
Now

$$
\begin{aligned}
& q_{n}=Q>S>0 \\
& q_{n} \geq q_{n-1}>0 \text { so } \\
& q_{n}>\left|S-q_{n-1}\right|
\end{aligned}
$$

Hence $S-q_{n-1}=0$ and so $R-p_{n-1}=0$ thus
$\frac{R}{S}=\frac{p_{n-1}}{q_{n-1}}$ and $x=\frac{p_{n} \xi+p_{n-1}}{q_{n} \xi+q_{n-1}}$
i.e.

$$
\begin{aligned}
x & =\left[a_{0}, a_{1}, \ldots, a_{n}, \xi\right] \\
& =\left[a_{0}, a_{1}, \ldots a_{n}, c_{0}, c_{1}\right]
\end{aligned}
$$

where $\xi=\left[c_{0} ; c_{1}, c_{2} \ldots\right]$ and $c_{0} \neq 0$ as $\xi>1$ and so ξ is the $n+1$ th complete quotient.
Proof of theorem
Suppose $\alpha=\left[a_{0}, \ldots a_{k}, c_{0}, c_{1} \ldots\right]=\left[a_{0}, \ldots a_{k}, w\right]$
$\beta=\left[b_{0}, \ldots b_{j}, c_{o}, c_{1} \ldots\right]=\left[b_{0}, \ldots b_{j}, w\right]$
then

$$
\alpha=\frac{p_{k} w+p_{k-1}}{q_{k} w+q_{k-1}} \quad \quad p_{k} q_{k-1}-p_{k-1} q_{k}= \pm 1
$$

$$
\beta=\frac{p_{j}^{\prime} w+p_{j-1}^{\prime}}{q_{j}^{\prime} w+q_{j-1}^{\prime}} \quad \quad p_{j}^{\prime} q_{j-1}^{\prime}-p_{j-1}^{\prime} q ;_{j}= \pm 1
$$

eliminating w will give

$$
\alpha=\frac{A \beta+B}{C \beta+D} \text { where } A D-B C= \pm 1 .
$$

Now suppose

$$
\alpha=\frac{A \beta+B}{C \beta+D} A D-B C= \pm 1
$$

assume w.l.o.g. $C \beta+D>0$.
Let $\beta=\left[b_{0}, \ldots b_{k-1} \beta_{k}\right]=\frac{p_{k-1} \beta_{k}+p_{k-2}}{q_{k-1} \beta_{k}+q_{k-2}}$ substituting fo β in $\alpha=\frac{A \beta+B}{C \beta+D}$ gives

$$
\alpha=\frac{P \beta_{K}+R}{q \beta_{k}+s}
$$

where

$$
\begin{aligned}
P & =A p_{k-1}+B q_{k-1} \\
R & =A p_{k-2}+B q_{k-2} \\
Q & =C p_{k-1}+D q_{k-1} \\
S & =C p_{k-2}+D q_{k-2}
\end{aligned}
$$

So $P, Q, R, S \in Z$ and

$$
P S_{Q} R=(A D-B C)\left(p_{k-1} q_{k-2}-p_{k-1} q_{k-1}\right)= \pm 1
$$

Now $\left|\beta-\frac{p_{k-1}}{q_{k-1}}\right|<\frac{1}{q_{k-1}^{2}}$ and $\left|\beta-\frac{p_{k-2}}{q_{k-2}}\right|<\frac{1}{q_{k-2}^{2}}$
so

$$
p_{k-1}=q_{k-1} \beta+\frac{\varepsilon}{q_{k-1}} ; p_{k-1}=q_{k-1} \beta+\frac{\varepsilon^{\prime}}{q_{k-1}}
$$

where $|\varepsilon|<1$ and $\left|\varepsilon^{\prime}\right|<1$.
So

$$
\begin{aligned}
Q & =(C \beta+D) q_{k-1}+\frac{C \varepsilon}{q_{k-1}} \\
S & =(C \beta+D) q_{k-2}+\frac{C \varepsilon^{\prime}}{q_{k-2}}
\end{aligned}
$$

Now $C \beta+D>0$ and $q_{k-1}>q_{k-1}$ also $q_{n} \rightarrow \infty$ as $n \rightarrow \infty$. So provided k is sufficiently large, $Q>S>0$
For such $k, \alpha=\frac{P \beta_{k}+R}{Q \beta_{k}+S} P S-Q R= \pm 1, Q>S>0$
so β_{k} is a complete quotient in the continued fraction for α by the lemma thus $\alpha=\left[a_{0} ; a_{1}, \ldots a_{m}, b_{k}, b_{k+1} \ldots\right]$ i.e. α is equivalent to β.
We now define the Markov constant of an irrational number α by

$$
M(\alpha)=\sup \left\{\lambda:\left|\alpha-\frac{p}{q}\right|<\frac{1}{\lambda q^{2}} \text { has infinitely many solutions } \frac{p}{q}\right\}
$$

So Huzwitz theorem says
$\forall \alpha M\left(\alpha \geq \sqrt{5}\right.$ and $M\left(\frac{1+\sqrt{5}}{2}\right)=\sqrt{5}$.
We now extend this :
Theorem
If α is equivalent to β then $M(\alpha)=M(\beta)$. If α is not equivalent to $\frac{1+\sqrt{5}}{2}$ then $M(\alpha) \geq \sqrt{8}$. If α is equivalent to $1+\sqrt{2}$ then $M(\alpha)=\sqrt{8}$.
Proof
Recall that

$$
\begin{aligned}
\left|\alpha-\frac{p_{k}}{q_{k}}\right| & =\frac{1}{q_{k}\left(q_{k} \alpha_{k+1}+q_{k-1}\right)} \\
& =\frac{1}{q_{k}^{2}\left(\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}\right)}
\end{aligned}
$$

Thus

$$
M(\alpha)=\lim _{k \rightarrow \infty} \sup \left(\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}\right)
$$

Recall from the discussion of symmetric continued fractions that

$$
\frac{q_{k}}{q_{k-1}}=\left[a_{k} ; a_{k-1}, \ldots a_{1}\right]
$$

so

$$
\frac{q_{k-1}}{q_{k}}=\left[0 ; a_{k} a_{k-1} \ldots a_{1}\right]
$$

so

$$
M(\alpha)=\lim _{k \rightarrow \infty} \sup \left(\left[0 ; a_{k}, a_{k-1}, \ldots a_{1}\right]+\alpha_{k+1}\right)
$$

Now if α is equivalent to β then $\beta_{j}=\alpha_{k}$ and $b_{j}=a_{k}$ for all sufficiently large k and j for which $j-k$ has a suitable fixed value h.

If the convergents of β are $\frac{P_{j}}{Q_{j}}$ then for j and k differing by h, the continued fractions for $\frac{q_{k-1}}{q_{k}}$ and $\frac{Q_{j-1}}{Q_{j}}$ have rhe same partial quotients at the beginning, and the length of agreement can be made large by making j and k sufficiently large.
Suppose $\frac{q_{k-1}}{q_{k}}$ and $\frac{Q_{j-1}}{Q_{j}}$ agree in the first l_{1} partial quotients, and denote the common convergents by $\frac{r_{i}}{s_{i}}(i=0, \ldots l)$
so

$$
\frac{q_{k-1}}{q_{k}}=\frac{r_{l-1} x_{l}+r_{l-2}}{s_{l-1} x_{l}+s_{l-2}}
$$

and

$$
\frac{Q_{j-1}}{Q_{j}}=\frac{r_{l-1} y_{l}+r_{l-2}}{s_{l-1} y_{l}+s_{l-2}}
$$

Then $\left[x_{l}\right]=\left[y_{l}\right]=$ common $l+1$ th partial quotient so $\left|x_{l}-y_{l}\right| \leq 1$.
Then we have

$$
\left|\frac{q_{k-1}}{q_{k}}-\frac{Q_{j-1}}{Q_{j}}\right|=\frac{\left|x_{l}-y_{l}\right|}{\left(s_{l-1} x_{l}+s_{l-2}\right)\left(s_{l-1} y_{l}+s_{l-1}\right)} \leq \frac{1}{s_{l-1}^{2}}
$$

Now provided j and k are large enough, we have

$$
\left|\frac{q_{k-1}}{q_{k}}-\frac{Q_{j-1}}{Q_{j}}\right|<\varepsilon
$$

since $s_{l-1} \geq(l-1)$ th term in Fibonacci sequence.
Also for large $j, k \alpha_{k}=\beta_{j}$, so

$$
\left(\alpha_{k}+\frac{q_{k-1}}{q_{k}}\right)-\left(\beta_{j}+\frac{Q_{j-1}}{Q_{j}}\right)=\frac{q_{k-1}}{q_{k}}-\frac{Q_{j-1}}{Q_{j}} \rightarrow 0 \text { as } j, k \rightarrow \infty, j-k=h
$$

Thus $M(\alpha)=M(\beta)$
If α is not equivalent to $\frac{\sqrt{5}+1}{2}$ then infinitely many of the a_{k} are ≥ 2.
If $a_{k} \geq 3$ for infinitely many k then

$$
\begin{aligned}
M(\alpha) & =\lim \sup \left(\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}\right) \\
& \geq \lim \sup \left(a_{k+1}\right) \geq 3
\end{aligned}
$$

So suppose that the a_{k} contain only 1's and 2's from some point on. Case I
$a_{k}=2$ from some point on. Then α is equivalent to $1+\sqrt{2}=[2 ; 2,2, \ldots]$

$$
\begin{aligned}
M(\alpha) & =\lim \sup \left(\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}\right) \\
\alpha_{k+1} & =[2 ; 2, \ldots]=1+\sqrt{2} \\
\frac{q_{k-1}}{q_{k}} & =[0 ; \underbrace{2,2, \ldots}_{k \text { times }}] \rightarrow \frac{1}{1+\sqrt{2}} \text { as } k \rightarrow \infty
\end{aligned}
$$

So $M(\alpha)=1+\sqrt{2}+\frac{1}{1+\sqrt{2}}=\sqrt{8}$
Case II
Suppose thee are infinitely many 1's and 2's.
Then there are infinitely many k such that $a_{k}=1$ and $a_{k+1}=2$, so

$$
\begin{aligned}
\alpha_{k+1} & =2+\frac{1}{a_{k+2}+} \frac{1}{a_{k+3}} \geq 2+\frac{1}{2+\frac{1}{1}}=\frac{7}{3} \\
\frac{q_{k-1}}{q_{k}} & =\frac{1}{a_{k}+} \frac{1}{a_{k-1}+} \ldots \geq \frac{1}{1+\frac{1}{a_{k-1}}} \geq \frac{1}{1+\frac{1}{1}}=\frac{1}{2}
\end{aligned}
$$

So $M(\alpha) \geq \frac{7}{3}+\frac{1}{2}=\frac{17}{6}>\sqrt{8}$
Note: This shows that if $\alpha \nsim 1+\sqrt{2}$ then $M(\alpha) \geq \frac{17}{6}$.
Theorem
There are uncountably many α with $M(\alpha)=3$
Proof
Let $\alpha=[\underbrace{1 ; 1,1, \ldots 1}_{r_{1}}, 2,2, \underbrace{1,1, \ldots 1}_{r_{2}}, 2,2, \underbrace{1,1, \ldots 1}_{r_{3}}, 2,2,1, \ldots] r_{1}<r_{2}<r_{3}$
(i) If $a_{k+1}=1$ then $\alpha_{k+1}<2$ and since $\frac{q_{k-1}}{q_{k}}<1, \alpha_{k+1}+\frac{q_{k-1}}{q_{k}}<3$.
(ii) If $a_{k+1}=2$ and $a_{k+1}=2$ then

$$
\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}=\left(2+\frac{1}{2+} \frac{1}{1+} \frac{1}{1+} \ldots\right)+\left(\frac{1}{1+} \frac{1}{1+} \ldots \frac{1}{1}\right)
$$

If k is large the sequences of 1 's can be made as long as we like before a 2 appears. So $\alpha_{k+1}+\frac{q_{k-1}}{q_{k}} \rightarrow 2+\frac{1}{2+\frac{\sqrt{5-1}}{2}}+\frac{\sqrt{5}-1}{2}=3$
(iii) If $a_{k+1}=2$ and $a_{k}=1$ then

$$
\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}=\left(2+\frac{1}{1+1+} \frac{1}{1+} \ldots\right)+\left(\frac{1}{2+} \frac{1}{1+} \ldots \frac{1}{1}\right) \rightarrow 2+\frac{1}{\frac{\sqrt{5}+1}{2}}+\frac{1}{2+\frac{\sqrt{5}-1}{2}}=3
$$

So $M(\alpha)=\lim \sup \left(\alpha_{k+1}+\frac{q_{k-1}}{q_{k}}\right)=3$
Two such α 's are equivalent iff their associated sequences of r_{i} 's are equivalent in the same sense of having equal tails. There are uncountably many inequivalent such sequences of r_{i} 's so uncountably many inequivalent α with $M(\alpha)=3$.

