
CONTINUED FRACTIONS
BEST APPROXIMATIONS

a
b
is said to be a best approximation to α (α ∈ Z b ∈ N) if

∣
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
∣
<

∣
∣
∣
∣α−

a

b

∣
∣
∣
∣⇒ q > b.

We now prove that the convergents to an (irrational) number give a sequence
of best approximations.
Note that as in the previous result, we often investigate |qα− p| rather than
∣
∣
∣α− p

q

∣
∣
∣. Inequalities involving the former are often a bit stronger the those

involving the latter.
Theorem
If |qα − p| < |qnα − pn|, n > 0 where pn

qn
is a convergent of the continued

fraction for α, then q > qn.
Proof
Assume that |qα − p| < qnα − pn| and that q ≤ qn. It follows that q <

qn+1 (n > 0). Consider the equations

x.pn + y.pn+1 = p

x.qn + y.qn+1 = q

pnqn+1 − pn+1qn = (−1)n, so this pair of equations has integer solutions x, y.
Now y = 0 ⇒ p = xpn q = xqn, x 6= 0 and so |qα − p| = |x||qnα − pn| ≥
|qnα− pn|
If x = 0 then y 6= 0 and q = yqn which contradicts q ≤ qn.
So x and y are non-zero.
We now show that x and y are of opposite sign.

0 < q = xqn + yqn+1 < qn+1

x and y cant both be < 0 as q > 0
x and y cant both be > 0 otherwise > qn+1

Now qnα−pn and qn+1|alpha−pn+1 have opposite signs, since the convergents
alternate either side of α, so x(qnα− pn) and y(qn+1α− pn+1) have the same
sign.
Also

qα− p = x(qnα− pn) + y(qn+1α− pn+1)

so
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|qα− p| = |x(qnα− pn)|+ |y(qn+1α− pn+1)|
> |x(qnα− pn)| ≥ |qnα− pn|

This contradiction proves the theorem.
This proof goes back to Legendre, and is quoted in Perron.
Now

∣
∣
∣α− p

q

∣
∣
∣ <

∣
∣
∣α− pn

qn

∣
∣
∣

andq ≤ qn multiplying the inequalities

⇒ |qα− p| < |qnα− pn| ⇒ q > qn

So the convergents are the best approximations to α. But how good are
they?
Now we have already seen the equation

α− pn

qn
=

(−1)n
qn(αn+1qn + qn−1)

so

∣
∣
∣
∣
∣
alpha− pn

qn

∣
∣
∣
∣
∣
=

1

qn(αn+1qn + qn−1)
≤ 1

qn(an+1qn + qn−1)
=

1

qnqn+1

<
1

q2
n

We already know from Dirichlet’s theorem that an irrati0onal α has infinitely
many rational approximations p

q
satisfying

∣
∣
∣α− p

q

∣
∣
∣ < 1

q2 .
The sequence of convergents supplies such a set.
This does not give them all however. E.g. consider rational approximations
to 779

207

The convergents are

3, 4,
15

4
,
64

17
,
143

38
,
779

207
.

779

207
− 79
21

=
6

4347
≈ 1.38× 10−3

1

212
≈ 2.27× 10−3

However, notice that 79

21
= 15+64

4+17

I shall not pursue this, but instead show that if
∣
∣
∣α− p

q

∣
∣
∣ < 1

2q2 (p, q) = 1 then
p
q
is one of the convergents of the continued fraction for α.

Proof
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Suppose not. Then qn ≤ q ≤ qn+1 determines an integer n, and |qα − φ| <
|qnα− pn| is impossible. ( The earlier theorem can be improved to q ≥ qn+1)
so |qnα− pn| ≤ |qα− p| < 1

2q

i.e
∣
∣
∣α− pn

qn

∣
∣
∣Z < 1

2qqn

Now

1

qqn
≤ |qpn − pqn|

qqn
(even if q = qn

p

q
6= pn

qn
)

=

∣
∣
∣
∣
∣

pn

qn
− p

q

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
α− pn

qn

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
∣

<
1

2qqn
+
1

2q2

1

2qqn
<

1

2q2

so q < qn This is a contradiction so the theorem is proved.
Now of any two successive convergents, at least one satisfies

∣
∣
∣α− p

q

∣
∣
∣ < 1

2q2

Proof
Since the convergents are alternatively greater and less then x

∣
∣
∣
∣
∣

pn+1

qn+1

− pn

qn

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

pn+1

qn+1

− α

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
α− pon

qn

∣
∣
∣
∣
∣

Suppose the result false. Then

1

2q2
n+1

+
1

2q2
n

≤
∣
∣
∣
∣
∣

pn+1

qn+1

− α

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
α− pn

qn

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

pn+1

qn+1

− pn

qn

∣
∣
∣
∣
∣

=
1

qnqn+1

i.e.
(

1

qn+1
− 1

qn

)2 ≤ 0 i.e. qn+1 = qn. This is true only if n = 1 a1 = 1 q1 =
q0 = 1. Otherwise qn+1 > qn.
Even in this case

0 <
p1

q1
− x = 1− 1

1+

1

a2+
< 1− a2

a2 + 1
≤ 1
2
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so the theorem is still true.
Further, of any three successive convergents, at least one satisfies

∣
∣
∣α− p

q

∣
∣
∣ <

1

q2
√

5

Proof

∣
∣
∣
∣
∣
α− pn

qn

∣
∣
∣
∣
∣
=

1

qn(αn+1qn + qn−1)
=

1

q2
n

(

αn+1 +
qn−1

qn

)

Now suppose that

αi +
qi−2

qi−1

≤
√
5 for i = n− 1, n, n+ 1

Then

αn−1 = an−1 +
1

αn

and
qn−1

qn−2

= an−1 +
qn−3

qn−2

so

1

αn

+
qn−1

qn−2

= αn−1 +
qn−3

qn−2

≤
√
5

by assumption and

1 = αn

1

αn

≤
(√
5 +

qn−2

qn−1

)(√
5− qn−1

qn−2

)

= 5 + 1−
√
5

(

qn−2

qn−1

+
qn−1

qn−2

)

giving qn−2

qn−1
+ qn−1

qn−2
≤
√
5

In fact since LHS is rational we have strictly less then, so

(

qn−1

qn−1

)2

−
(

qn−2

qn−1

)√
5 + 1 < 0

(

qn−2

qn−1

− 1
2

√
5

)2

<
1

4
i.e.

qn−2

qn−1

>
1

2
(
√
5− 1)

This has used i = n− 1, n. Using 1 = n, n+ 1 gives

qn−1

qn
>
1

2
(
√
5− 1)
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Now qn = anqn−1 + qn−2

an =
qn

qn−1

− qn−2

qn−1

<
2√
5− 1

− 1
2
(
√
5− 1) = 1

an < 1 is a contradiction.
Now let α = 1

2
(
√
5− 1) = [0, 1, 1, 1, . . .]

Suppose that there are an infinite number of solutions of

∣
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
∣
<

1

Aq2
A >

√
5

α = p

q
+ δ

q2 where |δ| < 1

A
< 1√

5

Then δ
q
= qα− p and

δ

q
− 1
2
q
√
5 = q

(
1

2

√
5− 1

)

− p− 1
2
q
√
5 = −1

2
q − p

so

(

δ

q

)2

− δ
√
5 +

5

4
q2 =

(
1

2
q + p

)2

so

(

δ

q

)2

− δ
√
5 = p2pq − q2

when q is large, since |δ|
√
5 < 1 the LHS is between −1 and +1 whereas RHS

is an integer.
So p2 + pq− q2 = 0 i.e.(2p+ q)2 = 5q2 which is impossible for integers p and
q. So 1√

5
is the best possible. This establishes Hurwitz theorem.

We now investigate for which numbers
√
5 is best possible. It turns out that

the criterion is that these numbers should end in an infinite tail of 1’s. We
generalise this.
Definition
Two irrational numbers α and β are equivalent if they have the same tail to
their continued fraction, in the sense that
α = [a0; a1, . . . , ak, c0, c1c2 . . .]
β = [b0; b1, . . . , bj, c0, c1, c2 . . .]
Theorem
Two irrational numbers α and β are equivalent if and only if there exist
integers a, b, c, d with ad− bc = ±1 such that
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α =
Aβ +B

Cβ +D

Lemma
if x = Pξ+R

Qξ+S
where ξ > 1, PS − RQ = ±1, and Q > S > 0 then r

S
and P

Q

are two consecutive convergents to the continued function for x. If R
S
is the

(n− 1)th, P
Q
is the nth and ξ is the (n− 1)th complete quotient.

Proof

P

Q
= [a0, a1, . . . , an] =

pn

qn

n can be even or odd. Choose it so that PS −QR = (−1)n−1

(p, q) = 1 so P = pn Q = qn
so pnS − qnR = (−1)n−1 = pnqn−1 − pn−1qn
so pn(S − qn−1) = qn(R− pn−1)
so qn|S − qn−1 since (pn, qn) = 1.
Now

qn = Q > S > 0

qn ≥ qn−1 > 0 so

qn > |S − qn−1|

Hence S − qn−1 = 0 and so R− pn−1 = 0 thus
R
S
= pn−1

qn−1
and x = pnξ+pn−1

qnξ+qn−1

i.e.

x = [a0, a1, . . . , an, ξ]

= [a0, a1, . . . an, c0, c1]

whereξ = [c0; c1, c2 . . .] and c0 6= 0 as ξ > 1 and so ξ is the n+ 1th complete
quotient.
Proof of theorem
Suppose α = [a0, . . . ak, c0, c1 . . .] = [a0, . . . ak, w]
β = [b0, . . . bj, co, c1 . . .] = [b0, . . . bj, w]
then

α =
pkw + pk−1

qkw + qk−1

pkqk−1 − pk−1qk = ±1
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β =
p′jw + p′j−1

q′jw + q′j−1

p′jq
′
j−1 − p′j−1q;j = ±1

eliminating w will give

α =
Aβ +B

Cβ +D
where AD −BC = ±1.

Now suppose

α =
Aβ +B

Cβ +D
AD −BC = ±1

assume w.l.o.g. Cβ +D > 0.
Let β = [b0, . . . bk−1βk] =

pk−1βk+pk−2

qk−1βk+qk−2

substituting fo β in α = Aβ+B

Cβ+D
gives

α =
PβK +R

qβk + s

where

P = Apk−1 +Bqk−1

R = Apk−2 +Bqk−2

Q = Cpk−1 +Dqk−1

S = Cpk−2 +Dqk−2

So P,Q,R, S ∈ Z and

PSQR = (AD −BC)(pk−1qk−2 − pk−1qk−1) = ±1

Now
∣
∣
∣β − pk−1

qk−1

∣
∣
∣ < 1

q2
k−1

and
∣
∣
∣β − pk−2

qk−2

∣
∣
∣ < 1

q2
k−2

so

pk−1 = qk−1β +
ε

qk−1

; pk−1 = qk−1β +
ε′

qk−1

where |ε| < 1 and |ε′| < 1.
So

Q = (Cβ +D)qk−1 +
Cε

qk−1

S = (Cβ +D)qk−2 +
Cε′

qk−2
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Now Cβ +D > 0 and qk−1 > qk−1 also qn →∞ as n→∞. So provided k is
sufficiently large, Q > S > 0
For such k, α = Pβk+R

Qβk+S
PS −QR = ±1, Q > S > 0

so βk is a complete quotient in the continued fraction for α by the lemma
thus α = [a0; a1, . . . am, bk, bk+1 . . .] i.e. α is equivalent to β.
We now define the Markov constant of an irrational number α by

M(α) = sup

{

λ :

∣
∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
∣
<
1

λq2
has infinitely many solutions

p

q

}

So Huzwitz theorem says
∀α M(α ≥

√
5 and M

(
1+
√

5

2

)

=
√
5.

We now extend this :
Theorem
If α is equivalent to β then M(α) = M(β). If α is not equivalent to 1+

√
5

2

then M(α) ≥
√
8. If α is equivalent to 1 +

√
2 then M(α) =

√
8.

Proof
Recall that

∣
∣
∣
∣
∣
α− pk

qk

∣
∣
∣
∣
∣
=

1

qk(qkαk+1 + qk−1)

=
1

q2
k

(

αk+1 +
qk−1

qk

)

Thus

M(α) = lim
k→∞

sup

(

αk+1 +
qk−1

qk

)

Recall from the discussion of symmetric continued fractions that

qk

qk−1

= [ak; ak−1, . . . a1]

so

qk−1

qk
= [0; akak−1 . . . a1]

so

M(α) = lim
k→∞

sup ([0; ak, ak−1, . . . a1] + αk+1)

Now if α is equivalent to β then βj = αk and bj = ak for all sufficiently large
k and j for which j − k has a suitable fixed value h.

8



If the convergents of β are Pj

Qj
then for j and k differing by h, the continued

fractions for qk−1

qk
and Qj−1

Qj
have rhe same partial quotients at the beginning,

and the length of agreement can be made large by making j and k sufficiently
large.
Suppose qk−1

qk
and Qj−1

Qj
agree in the first l1 partial quotients, and denote the

common convergents by ri

si
(i = 0, . . . l)

so

qk−1

qk
=

rl−1xl + rl−2

sl−1xl + sl−2

and

Qj−1

Qj

=
rl−1yl + rl−2

sl−1yl + sl−2

Then [xl] = [yl] = common l + 1th partial quotient so |xl − yl| ≤ 1.
Then we have

∣
∣
∣
∣
∣

qk−1

qk
− Qj−1

Qj

∣
∣
∣
∣
∣
=

|xl − yl|
(sl−1xl + sl−2)(sl−1yl + sl−1)

≤ 1

s2
l−1

Now provided j and k are large enough, we have

∣
∣
∣
∣
∣

qk−1

qk
− Qj−1

Qj

∣
∣
∣
∣
∣
< ε

since sl−1 ≥ (l − 1)th term in Fibonacci sequence.
Also for large j, k αk = βj, so

(

αk +
qk−1

qk

)

−
(

βj +
Qj−1

Qj

)

=
qk−1

qk
− Qj−1

Qj

→ 0 as j, k →∞, j − k = h

Thus M(α) =M(β)

If α is not equivalent to
√

5+1

2
then infinitely many of the ak are ≥ 2.

If ak ≥ 3 for infinitely many k then

M(α) = lim sup

(

αk+1 +
qk−1

qk

)

≥ lim sup(ak+1) ≥ 3

So suppose that the ak contain only 1’s and 2’s from some point on.
Case I
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ak = 2 from some point on. Then α is equivalent to 1 +
√
2 = [2; 2, 2, . . .]

M(α) = lim sup

(

αk+1 +
qk−1

qk

)

αk+1 = [2; 2, . . .] = 1 +
√
2

qk−1

qk
= [0; 2, 2, . . .

︸ ︷︷ ︸

k times

]→ 1

1 +
√
2
as k →∞

So M(α) = 1 +
√
2 + 1

1+
√

2
=
√
8

Case II
Suppose thee are infinitely many 1’s and 2’s.
Then there are infinitely many k such that ak = 1 and ak+1 = 2, so

αk+1 = 2 +
1

ak+2+

1

ak+3

≥ 2 + 1

2 + 1

1

=
7

3

qk−1

qk
=

1

ak+

1

ak−1+
. . . ≥ 1

1 + 1

ak−1

≥ 1

1 + 1

1

=
1

2

So M(α) ≥ 7

3
+ 1

2
= 17

6
>
√
8

Note: This shows that if α 6∼ 1 +
√
2 then M(α) ≥ 17

6
.

Theorem
There are uncountably many α with M(α) = 3
Proof
Let α = [1; 1, 1, . . . 1

︸ ︷︷ ︸

r1

, 2, 2, 1, 1, . . . 1
︸ ︷︷ ︸

r2

, 2, 2, 1, 1, . . . 1
︸ ︷︷ ︸

r3

, 2, 2, 1, . . .] r1 < r2 < r3

(i) If ak+1 = 1 then αk+1 < 2 and since
qk−1

qk
< 1, αk+1 +

qk−1

qk
< 3.

(ii) If ak+1 = 2 and ak+1 = 2 then

αk+1 +
qk−1

qk
=
(

2 +
1

2+

1

1+

1

1+
. . .

)

+
(
1

1+

1

1+
. . .
1

1

)

If k is large the sequences of 1’s can be made as long as we like before
a 2 appears. So αk+1 +

qk−1

qk
→ 2 + 1

2+

√

5−1

2

+
√

5−1

2
= 3

(iii) If ak+1 = 2 and ak = 1 then

αk+1+
qk−1

qk
=
(

2 +
1

1+

1

1+
. . .

)

+
(
1

2+

1

1+
. . .
1

1

)

→ 2+
1

√
5+1

2

+
1

2 +
√

5−1

2

= 3
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So M(α) = lim sup
(

αk+1 +
qk−1

qk

)

= 3
Two such α’s are equivalent iff their associated sequences of ri’s are equiv-
alent in the same sense of having equal tails. There are uncountably many
inequivalent such sequences of ri’s so uncountably many inequivalent α with
M(α) = 3.
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