Question

a) Let T be the set of all real numbers in $(0,1)$ whose decimal expansion does not contain the digit 7. Prove that T has Lebesgue measure zero.
b) Let S be a measurable subset of $[0,1]$ with the property that if $x \epsilon S$, and if the decimal expansion of y differs from that of x in only a finite number of places then $y \epsilon S$.

Show that if a and b are real numbers in $[0,1]$ with terminating decimal expansions, and $a<b$, then

$$
m(S \cap[a, b])=m(S) \cdot(b-a) .
$$

Deduce that this result is true for all intervals $[a, b] \subseteq[0,1]$.

Hence or otherwise prove that S has measure 0 or 1 .

Answer

a) Let T be the set of all real numbers in $(0,1)$ whose decimal expansion does not contain the digit 7 .

$$
\text { Then } T \subseteq \bigcup_{\substack{r_{i}=0 \\ r_{i} \neq 7 \\ i=1, \cdots n}}^{10}\left[\sum_{i=1}^{n-1} \frac{r_{i}}{10^{i}}+\frac{r_{n}}{10^{n}}, \sum_{i=1}^{n-1} \frac{r_{i}}{10^{i}}+\frac{r_{n}+1}{10^{n}}\right]
$$

$$
\text { Thus } m(T) \leq \sum_{\substack{r_{i}=0 \\ r_{i} \neq 7 \\ i=1, \cdots n}}^{10} m\left[\sum_{i=1}^{n-1} \frac{r_{i}}{10^{i}}+\frac{r_{n}}{10^{n}}, \sum_{i=1}^{n-1} \frac{r_{i}}{10^{i}}+\frac{r_{n}+1}{10^{n}}\right]
$$

$$
=\sum_{\substack{r_{i}=0 \\ r_{i} \neq 7}}^{10} \frac{1}{10^{n}}=\frac{9^{n}}{10^{n}}<\epsilon \text { if } n \text { is large enough. }
$$

Therefore $m(T)=0$.
b) Suppose $a=\frac{m_{1}}{10^{n_{1}}}, \quad b=\frac{m_{2}}{10^{n_{2}}}$

Let $n=\max \left(n_{1}, n_{2}\right)$ then we can write $a=\frac{l_{1}}{10^{n}}, \quad b=\frac{l_{2}}{10^{n}}$
$[a, b]=\bigcup_{i=l_{1}}^{l_{2}-1}\left[\frac{i}{10^{n}}, \frac{i+1}{10^{n}}\right]$
[These abutting intervals have just one point in common with their neighbours, there are only a finite number of them, and so additivity still holds.]
Now let $x \epsilon S \cap\left[\frac{i}{10^{n}}, \frac{i+1}{10^{n}}\right]$ and consider $S \cap\left[\frac{j}{10^{n}}, \frac{j+1}{10^{n}}\right]$
The number $y=x+\frac{j-i}{10^{n}}$ will belong to $\left[\frac{j}{10^{n}}, \frac{j+1}{10^{n}}\right]$ and will differ at most the first n decimal places from the expansion of x.
Thus we shall have $y \epsilon S \cap\left[\frac{j}{10^{n}}, \frac{j+1}{10^{n}}\right]$.

The reverse process can also be applied, and so this proves that $S \cap\left[\frac{i}{10^{n}}, \frac{i+1}{10^{n}}\right]$ and $S \cap\left[\frac{j}{10^{n}}, \frac{j+1}{10^{n}}\right]$
are simply translates of one another.
Thus $m(S)=10^{n} m\left(S \cap\left[\frac{i}{10^{n}}, \frac{i+1}{10^{n}}\right]\right)$ for all i,
and so $m\left(S \cap\left[a, b[)=\left(l_{2}-l_{1}\right) m\left(S \cap\left[\frac{i}{10^{n}}, \frac{i+1}{10^{n}}\right]\right)\right.\right.$
$=\frac{l_{2}-l_{1}}{10^{n}} m(S)=(b-a) m(S)$

Now if a and b are any real numbers $(a<b)$ we can express a as a decreasing sequence of terminating decimals $\left\{a_{n}\right\}$ and b as an increasing sequence of terminating decimals $\left\{b_{n}\right\}$ with $b_{n}>a_{n}$.

Then $(a, b)=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$
and so $S \cap(a, b)=\bigcup_{n=1}^{\infty} S \cap\left[a_{n}, b_{n}\right]$.
Thus $m(S \cap[a, b])=m(S \cap(a, b))=m\left(\bigcup_{n=1}^{\infty} S \cap\left[a_{n}, b_{n}\right]\right)$
$=\lim _{n \rightarrow \infty} m\left(S \cap\left[a_{n}, b_{n}\right]\right)=\lim \left(b_{n}-a_{n}\right) m(S)=(b-a) m(S)$

Now let I_{n} be any system of intervals satisfying $\cup I_{n} \supseteq S$.

Then $m(S)=m\left(S \cap \bigcup I_{n}\right)=m\left(\cup S \cap I_{n}\right)$
$\leq \sum m\left(S \cap I_{n}\right)=m(S) \sum\left|I_{n}\right|$
i.e. $m(S) \leq m(S) \sum\left|I_{n}\right|$
so either $m(S)=0$ or $\sum\left|I_{n}\right| \geq 1$
i.e. $m(S) \geq 1$ but $S \subseteq[0,1]$,
so either $m(S)=0$ or $m(S)=1$

