Question

Let E be a bounded measurable subset of the plane. Let $H(t)$ be the halfplane defined by

$$
H(t)=\{(x, y) \mid x \leq t\} .
$$

The function $f(t)$ is defined for all real t by

$$
f(t)=m(E \cap H(t)),
$$

where m denotes Lebesgue measure in the plane.

Prove that f is a continuous function, and deduce that there is a line in the plane parallel to the y-axis which bisects E in the sense that a subset of E of measure $\frac{1}{2} m(E)$ lies on each side of the line.

Give an example of a set E for which the set $f^{-1}\left(\frac{1}{2} m(E)\right)$ contains more than one point.

Show that for all sets E, either $f^{-1}\left(\frac{1}{2} m(E)\right)$ is a single point or it is a closed interval.

Answer

E is bounded and so E is a subset of some square S with sides of length l parallel to the co-ordinate axes.
If $t_{1}<t_{2}$ then $E \cap H\left(t_{1}\right) \subseteq E \cap H\left(t_{2}\right)$ and so $f\left(t_{1}\right) \leq f\left(t_{2}\right)$
Then $f\left(t_{2}\right)-f\left(t_{1}\right)=m\left(E \cap H\left(t_{2}\right)\right)-m\left(E \cap H\left(t_{1}\right)\right)$
$=m\left[\left(E \cap H\left(t_{2}\right)\right)-\left(E \cap H\left(t_{1}\right)\right)\right]=m\left[E \cap\left(H\left(t_{2}\right)-H\left(t_{1}\right)\right]\right.$
$\leq m\left(S \cap\left(H\left(t_{2}\right)-H\left(t_{1}\right)\right)\right)=l\left(t_{2}-t_{1}\right)$.
Thus f is continuous everywhere (in fact f is uniformly continuous).
Since $E \subseteq S$, if t is large and negative $f(t)=0$ and if t is large and positive $f(t)=m(E)$. Thus, by the intermediate value theorem for continuous functions there is a number t_{0} such that

$$
f\left(t_{0}\right)=\frac{1}{2} m(E)
$$

so to the left of the line $x=t_{0}$ lies a portion of E of measure $\frac{1}{2} m(E)$ (since the measure of $E \cap l$ is zero for any line l) and also to the right of this line lies a portion of E of measure $\frac{1}{2} m(E)$.

Example. If E_{1} is the unit disc centre -2 and E_{2} is the unit disc centre +2 , and $E=E_{1} \cup E_{2}$ then $f(-1)=f(+1)=\frac{1}{2} m(E)$.

Now suppose $f^{-1}\left(\frac{1}{2} m(E)\right)$ is not a single point.
Let $a=\inf \left\{x \left\lvert\, x \in f^{-1}\left(\frac{1}{2} m(E)\right)\right.\right\} \quad b=\sup \left\{x \left\lvert\, x \in f^{-1}\left(\frac{1}{2} m(E)\right)\right.\right\}$, then $a<b$. We can find a sequence $x_{n} \rightarrow a$ such that $x_{n} \epsilon f^{-1}\left(\frac{1}{2} m(E)\right)$ i.e. $f\left(x_{n}\right)=\frac{1}{2} m(E)$. Since f is continuous $f(a)=\lim f\left(x_{n}\right)=\frac{1}{2} m(E)$ i.e. $a \in f^{-1}\left(\frac{1}{2} m(E)\right)$. Similarly $b \in f^{-1}\left(\frac{1}{2} m(E)\right)$. Since f is an increasing function.
$f(x)=\frac{1}{2}$ for all x satisfying $a \leq x \leq b$ and so $\left.f^{-1}\left(\frac{1}{2}\right)=[a, b]\right]$.

