Question

Consider the sequence $\left\{f_{n}\right\}$ of functions
$f_{n}(x)=\left\{\begin{array}{cc}n^{2} x & 0 \leq x \leq \frac{1}{n} \\ 2 n-n^{2} x & \frac{1}{n}<x \leq \frac{2}{n} \\ 0 & \text { otherwise }\end{array}\right.$
Evaluate $\int \lim f_{n}$ and $\lim \int f_{n}$ and comment.

Answer

$\lim _{n \rightarrow \infty} f_{n}(x)=0$ therefore $\int \lim f_{n}=0$

$$
\begin{aligned}
\int f_{n} & =\int_{0}^{\frac{1}{n}} n^{2} x+\int_{\frac{1}{n}}^{\frac{2}{n}} 2 n-n^{2} x \\
& =n^{2}\left[\frac{x^{2}}{2}\right]_{0}^{\frac{1}{n}}+\left[2 n x-n^{2} \frac{x^{2}}{2}\right]_{\frac{1}{n}}^{\frac{2}{n}} \\
& =n^{2} \frac{1}{2} \frac{1}{n^{2}}+2 n \frac{1}{n}-\frac{n^{2}}{2} \frac{3}{n^{2}} \\
& =\frac{1}{2}+2-\frac{3}{2}=1
\end{aligned}
$$

Therefore $\lim f_{n}=1$

