Question

(a) Show that all the roots of the equation

$$
(1+x)^{2 n+1}=(1-x)^{2 n+1}
$$

are given by

$$
\pm i \tan \left(\frac{k \pi}{2 n+1}\right) \quad k=0,1,2, \cdots, n
$$

By putting $n=2$ show that

$$
\tan ^{2}\left(\frac{\pi}{5}\right) \tan ^{2}\left(\frac{2 \pi}{5}\right)=5
$$

(b) If $w=2 z+z^{2}$ show that the circle $|z|=1$ corresponds to a cardioid in the w-plane.

Answer

(a)

$$
\begin{aligned}
(1+x)^{2 n+1} & =(1-x)^{2 n+1} \\
\text { So } \frac{1+x}{1-x} & =e^{\frac{2 \pi i}{2 n+1} k} \\
x & =\frac{e^{\frac{2 \pi i}{2 n+1} k}-1}{e^{\frac{2 n i}{2 n+1} k}+1} \\
& =\frac{e^{\frac{\pi k}{2 n+1}}-e^{-\frac{\pi i k}{2 n+1}}}{e^{\frac{\pi k}{2 n+1}}+e^{-\frac{\pi i k}{2 n+1}}} \\
& =i \tan \frac{\pi k}{2 n+1} \quad k=-n, \cdots, n \\
& = \pm i \tan \frac{\pi k}{2 n+1} \quad k=0, \cdots, n
\end{aligned}
$$

Putting $n=2$. The equation reduces to $x\left(x^{4}+10 x^{2}+5\right)=0$.
So the product of the non-zero roots is 5 .
i.e. $\tan ^{2}\left(\frac{\pi}{5}\right) \tan ^{2}\left(\frac{2 \pi}{5}\right)=5$.
(b) $w=2 z+z^{2}$
$w+1=(z+1)^{2}$
If z lies on the unit circle $z+1$ lies on the circle centre 1 radius 1

$$
r=2 \cos \theta
$$

So $r^{2}=4 \cos ^{2} \theta$

Let $w+1=\rho e^{i \phi} z+1=r e^{i \theta}$ the $\rho=r^{2}$ and $\phi=2 \theta$
So $\rho^{2}=16 \cos ^{2} \frac{\phi}{2}=8(1+\cos \phi)$ which is a cardioid.

w

