Question

(a) Show that all the roots of the equation

$$(1+x)^{2n+1} = (1-x)^{2n+1}$$

are given by

$$\pm i \tan\left(\frac{k\pi}{2n+1}\right)$$
 $k = 0, 1, 2, \cdots, n$

By putting n = 2 show that

$$\tan^2\left(\frac{\pi}{5}\right)\tan^2\left(\frac{2\pi}{5}\right) = 5.$$

(b) If $w = 2z + z^2$ show that the circle |z| = 1 corresponds to a cardioid in the *w*-plane.

Answer

(a)

$$(1+x)^{2n+1} = (1-x)^{2n+1}$$

So $\frac{1+x}{1-x} = e^{\frac{2\pi i}{2n+1}k}$
 $x = \frac{e^{\frac{2\pi i}{2n+1}k} - 1}{e^{\frac{2\pi i}{2n+1}k} + 1}$
 $= \frac{e^{\frac{\pi i k}{2n+1}} - e^{-\frac{\pi i k}{2n+1}}}{e^{\frac{\pi i k}{2n+1}} + e^{-\frac{\pi i k}{2n+1}}}$
 $= i \tan \frac{\pi k}{2n+1} \quad k = -n, \dots, n$
 $= \pm i \tan \frac{\pi k}{2n+1} \quad k = 0, \dots, n$

Putting n = 2. The equation reduces to $x(x^4 + 10x^2 + 5) = 0$. So the product of the non-zero roots is 5.

i.e.
$$\tan^2\left(\frac{\pi}{5}\right)\tan^2\left(\frac{2\pi}{5}\right) = 5.$$

(b) $w = 2z + z^2$

 $w + 1 = (z + 1)^2$

If z lies on the unit circle z + 1 lies on the circle centre 1 radius 1

So $r^2 = 4\cos^2\theta$

Let $w + 1 = \rho e^{i\phi} z + 1 = r e^{i\theta}$ the $\rho = r^2$ and $\phi = 2\theta$ So $\rho^2 = 16 \cos^2 \frac{\phi}{2} = 8(1 + \cos \phi)$ which is a cardioid.

