Question

A pipe has a variable circular cross section; the radius r depends on the distance along the pipe, x, as $r=a-b e^{-x}$, with $a>b$. If the speed of the water in the pipe is v_{0} at the inlet $(x=0)$ find the speed of the water in the pipe as a function of x.

Answer

Mass is conserved, therefore

$$
\frac{d m}{d t}=-\int_{S+} \mathbf{j} \cdot \mathbf{n} d s+\int_{S-} \mathbf{j} \cdot \mathbf{n} d s
$$

Now $\frac{d m}{d t}=0$. Thus $\int_{x=0} \mathbf{j} \cdot \mathbf{n} d s=\int_{\alpha} \mathbf{j} \cdot \mathbf{n} d s$ as ρ is constant.
Therefore $\rho 2 \pi(a-b) v_{0}=\rho 2 \pi\left(a-b e^{-x}\right) v(x) \Rightarrow v(x)=\frac{a-b}{a-b e^{-x}}$

