QUESTION

Prove that, for any prime p, if $p \mid a^{2} n$ then $p \mid a$ and hence $p^{n} \mid a^{n}$.
ANSWER
Suppose a is written as a product of prime powers as $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$. Then $a^{n}=p_{1}^{n \alpha_{1}} p_{2}^{n \alpha_{2}} \ldots p_{k}^{n \alpha_{k}}$. Now $p \mid a^{n}$, so p must be equal to one of the primes $p_{1}, p_{2} \ldots p_{k}$. Thus $p \mid a$ and $p^{n} \mid a^{n}$, as required.

