MA181 INTRODUCTION TO STATISTICAL MODELLING RANDOM VARIABLES

Definition A random variable X is a real-valued function defined on a sample space.

Examples 1. The number on a die,
2. Height of a 5 year old boy,
3. $x=\left\{\begin{array}{rr}0, & \text { black hair, } \\ 1, & \text { brown hair, } \\ 12, & \text { red/fair hair. }\end{array}\right.$

If the range of X is discrete, i.e. it consists of a finite or countably infinite number of points, then X is called a discrete random variable, otherwise it is said to be continuous.

Notation We let the upper case letter (X) denote the definition of a random variable and a lower case letter (x) denote a value taken by it. Thus it makes sense to ask if $X=x$ or if $Y=3$.

Probability function

Definition Let $p(x)=P(X=x)$. Then $p(x)$ is called the probability function (pf) of X.

Notes 1. $0 \leq p(x) \leq 1$ for all x,
2. $\sum_{\text {all }} p(x)=1$.

Example $p(x)= \begin{cases}0.3, & x=1 \\ 0.4, & x=3, \\ 0.1, & x=6, \\ 0.2, & x=10 .\end{cases}$

Distribution function

Definition Let $F(x)=P(X \leq x)$. Then $F(x)$ is called the (cumulative) distribution function (cdf) of X.

Notes 1. $F)(x)$ is defined over the whole line, i.e. for $-\infty<x<\infty$.
2. $F(x)$ is a monotonic increasing function of x such that $F(-\infty)=0$ and $F(\infty)=1$.
3. $F(x)$ is continuous from the right but not necessarily from the left. So, for $\varepsilon>0, F(x)=\lim _{\varepsilon \rightarrow 0} F(x+\varepsilon)$.

Example Consider the example with the probability function defined above. Then

$$
F(x)= \begin{cases}0, & -\infty<x<1 \\ 0.3, & 1 \leq x<3 \\ 0.7, & 3 \leq x<6 \\ 0.8, & 6 \leq x<10 \\ 1, & 10 \leq x<\infty\end{cases}
$$

Note that, if X takes integer values, $p(x)=F(x)-F(x-1)$.
Transformations of random variables Occasionally we may know the distribution of a random variable X but require the distribution of a function Y of X. If the function is one-one, then the problem is easily solved.

Example Let X be the number of heads showing when four coins are tossed and let $Y=3 X+5$ be my winnings. Then $P(Y=y)=P[X=$ $(y-5) / 3]$, so that

$$
p_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{16}, & x=0, \\
\frac{1}{4}, & x=1, \\
\frac{3}{8}, & x=2, \\
\frac{1}{4}, & x=3, \\
\frac{1}{16}, & x=4 .
\end{array} \quad \text { and } \quad P_{Y}(y)= \begin{cases}\frac{1}{16}, & x=5, \\
\frac{1}{4}, & x=8, \\
\frac{3}{8}, & x=11, \\
\frac{1}{4}, & x=14, \\
\frac{1}{16}, & x=17 .\end{cases}\right.
$$

Many-one functions need a little more care. Suppose $Y=X^{2}$. Then, for example, $P(Y=16)=P\left(X^{2}=16\right)=P(X=-4)+P(X=4)$ since there are two mutually exclusive ways for Y to equal 16. Similarly, $P(Y \leq 25)=P(-5 \leq X \leq 5)$.

