Question
Consider the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Show that
(i) $\quad f$ is continuous everywhere (pay special attention to $x=0$);
(ii) f is differentiable everywhere (likewise);
(iii) its derivative f^{\prime} is not continuous at $x=0$. [Thus f is differentiable everywhere but not C^{1} in any region containing the origin.] Show that the function f^{2} is C^{1} but not C^{2} in any region containing the origin.
Answer
(i) The function f is continuous at every $x \neq 0$ since it is obtained by multiplying and composing elementary continuous functions.
($\sin x$ is continuous everywhere as it is given as a convergent power series, or just check $|\sin (x+h)-\sin x|=\left\lvert\, 2 \cos \left(x+\frac{h}{2} \sin \frac{h}{2}|<2| \frac{h}{2}|=|h|\right.$. So if $h \rightarrow 0\right.$ then $\sin (x+h) \rightarrow \sin x$.)
At $x=0$ we must verify explicitly

$$
\begin{aligned}
|f(h)-f(0)| & =\left|h^{2} \sin \left(\frac{1}{h}\right)-0\right| \\
& \leq\left|h^{2}\right|
\end{aligned}
$$

(as $|\sin \theta| \leq 1$ always)
so $f(h) \rightarrow f(0)$ as $h \rightarrow 0$.
(ii) The function f is differentiable at every $x \neq 0$ since it is obtained by multiplying and composing elementary differentiable forms.
Indeed, for $x \neq 0$ we have

$$
\begin{aligned}
f^{\prime}(x) & =2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right) \\
& =2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) .
\end{aligned}
$$

At $x=0$ we observe explicitly

$$
\begin{aligned}
f(0+h)-f(0) & =h^{2} \sin \frac{1}{h} \\
& =0+h \\
\text { and }\left|h \sin \left(\frac{1}{h}\right)\right| & \leq|h| \rightarrow 0 \text { as } h \rightarrow 0
\end{aligned}
$$

so f is differentiable at 0 with $f^{\prime}(0)=0$.
(iii) Looking at the above, we see $f^{\prime}(x) \rightarrow f^{\prime}(0)$ as $x \rightarrow 0$. (Indeed, $\lim _{x} \rightarrow 0 f^{\prime}(x)$ doesn't exist). Thus f is not continuous at $x=0$.
We have $\left.\begin{array}{rlr}f^{2} x & =x^{4} \sin ^{2}\left(\frac{1}{x}\right) & , \\ & =0 & , x=0\end{array}\right\}$.
We find

$$
\left(f^{2}\right)^{\prime}(x)=4 x^{3} \sin \left(\frac{1}{x}\right)-2 x^{2} \sin \left(\frac{1}{x}\right) \cos \left(\frac{1}{x}\right), x \neq 0
$$

and (much as in (ii)) $\left(f^{2}\right)^{\prime}(0)=0$.
Since $|\sin \theta \cos \theta| \leq 1$ for all θ we see

$$
\left(f^{2}\right)^{\prime}(x) \rightarrow\left(f^{2}\right)^{\prime}(0), \quad \text { as } x \rightarrow 0
$$

So $\left(f^{2}\right)^{\prime}$ is continuous at 0 (and elsewhere), which says f^{2} is c.
However, $\left(f^{2}\right)^{\prime}$ is not c^{1} in any region containing $0\left(\Rightarrow f^{2}\right.$ is not c^{2} there) as the $2^{\text {nd }}$ term is $-x^{2} \sin \left(\frac{2}{x}\right)$: compare (ii), (iii) above.

