Question

Consider the function $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}), & x \neq 0\\ 0, & x = 0. \end{cases}$$

Show that

- (i) f is continuous everywhere (pay special attention to x = 0);
- (ii) *f* is differentiable everywhere (likewise);

(iii) its derivative f' is not continuous at x = 0. [Thus f is differentiable everywhere but not C^1 in any region containing the origin.] Show that the function f^2 is C^1 but not C^2 in any region containing the origin. Answer

(i) The function f is continuous at every $x \neq 0$ since it is obtained by multiplying and composing elementary continuous functions.

(sin x is continuous everywhere as it is given as a convergent power series, or just check $|\sin(x+h) - \sin x| = |2\cos(x+\frac{h}{2}\sin\frac{h}{2}| < 2|\frac{h}{2}| = |h|$. So if $h \to 0$ then $\sin(x+h) \to \sin x$.)

At x = 0 we must verify explicitly

$$|f(h) - f(0)| = |h^2 \sin(\frac{1}{h}) - 0|$$

 $\leq |h^2|$

(as $|\sin \theta| \le 1$ always) so $f(h) \to f(0)$ as $h \to 0$.

(ii) The function f is differentiable at every $x \neq 0$ since it is obtained by multiplying and composing elementary differentiable forms.

Indeed, for $x \neq 0$ we have

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right)$$
$$= 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right).$$

At x = 0 we observe explicitly

$$f(0+h) - f(0) = h^2 \sin \frac{1}{h}$$

= 0+h
and $|h \sin \left(\frac{1}{h}\right)| \leq |h| \to 0$ as $h \to 0$

so f is differentiable at 0 with f'(0) = 0.

(iii) Looking at the above, we see $f'(x) \to f'(0)$ as $x \to 0$. (Indeed, $\lim_x \to 0 f'(x)$ doesn't exist). Thus f is not continuous at x = 0.

We have $\begin{cases} f^2 x = x^4 \sin^2(\frac{1}{x}) & , x \neq 0 \\ = 0 & , x = 0 \end{cases}$.

We find

$$(f^2)'(x) = 4x^3 \sin\left(\frac{1}{x}\right) - 2x^2 \sin\left(\frac{1}{x}\right) \cos\left(\frac{1}{x}\right), \ x \neq 0$$

and (much as in (ii)) $(f^2)'(0) = 0$.

Since $|\sin\theta\cos\theta| \le 1$ for all θ we see

$$(f^2)'(x) \to (f^2)'(0), \text{ as } x \to 0$$

So $(f^2)'$ is continuous at 0 (and elsewhere), which says f^2 is c.

However, $(f^2)'$ is not c^1 in any region containing $0 \iff f^2$ is not c^2 there) as the 2^{nd} term is $-x^2 \sin(\frac{2}{x})$: compare (ii), (iii) above.