QUESTION

(a) Find the solution to the following differential equation:

$$
\left(x^{3}-7\right) \frac{d y}{d x}+3 x^{2} y^{2}=0
$$

subject to the initial condition $y=1$ when $x=2$.
(b) Find the solution to the following differential equation

$$
x \frac{d y}{d x}+2 y=\sin (x)
$$

subject to the initial condition $y=\frac{4}{\pi^{2}}$ when $x=\frac{\pi}{2}$.
(c) Fins the solution to the following differential equation given the conditions:

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+5 y=0
$$

subject to the initial conditions $y(0)=1, \frac{d y}{d x}(0)=5$.

ANSWER
(a) Rearranging we get $\frac{d y}{d x}=\frac{-3 x^{2} y^{2}}{\left(x^{3}-7\right)}$, which is separable with $\frac{1}{y^{2}} \frac{d y}{d x}=$ $\frac{-3 x^{2}}{\left(x^{3}-7\right)}$ giving $\frac{-1}{y}=\int \frac{-3 x^{2}}{x^{3}-7} d x$. Now put $u=x^{3}-7$ to get $\frac{d u}{d x}=3 x^{2}$ so that $\left.\int \frac{-3 x^{2}}{x^{3}-7} d x=\int \frac{\frac{-d u}{d x}}{u} d x=\int \frac{-1}{u} d u=-\log |u|+k-\log \right\rvert\, x^{3}-$ $7 \mid+k$. Hence $y=\frac{1}{\log \left|x^{3}-7\right|-k}$. Putting $y=1$ when $x=2$ gives $1=\frac{1}{-k}$ so $k=-1$ and $y=\frac{1}{\log \left|x^{3}-7\right|+1}$.
(b) Assuming $x \neq 0$ simplify to get $\frac{d y}{d x}+\frac{2}{x} y=\frac{\sin (x)}{x}$ which is first order linear with integrating factor $e^{\int \frac{2}{x} d x}=x^{2}$. The equation becomes $x^{2} y=$ $\int x \sin x d x$. Integrate by parts with $u=x$ and $\frac{d v}{d x}=\sin x$ to get
$x^{2} y=[-x \cos x]+\sin x+k$, so $y=\frac{-\cos x}{x}+\frac{\sin x}{x^{2}}+\frac{k}{x^{2}}$. Putting $y=\frac{4}{\pi^{2}}$ when $x=\frac{\pi}{2}$ we get $k=0$ so $y=\frac{-\cos x}{x}+\frac{\sin x}{x^{2}}$.
(c) Second order homogeneous linear with auxilliary equation $\lambda^{2}-2 \lambda+5-0$. Roots $1 \pm 2 i$ so general solution has the form $y=e^{x}[A \cos 2 x+B \sin 2 x]$. Then

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x}[-2 A \sin 2 x+2 B \cos 2 x]+e^{x}[A \cos 2 x+B \sin 2 x] \\
& =e^{x}[(2 B+A) \cos x+(B-2 A) \sin x]
\end{aligned}
$$

Putting $y(0)=1$, and $\frac{d y}{d x}(0)=5$ we get $A+2 B=5 A=1 \Rightarrow B=2$ so $y=e^{x}[\cos 2 x+2 \sin 2 x]$.

