Question

Estimate the centripetal acceleration of

- (a) an item of clothing in a tumble dryer;
- (b) the rim of a car tyre going at 100kmh^{-1}
- (c) the earth going around the sun (assume it has a circular orbit of radius 1.5×10^{11} m);
- (d) a child on a roundabout.

Make clear your assumptions

Answer

(a) Tumble dryer rotates about once per second, i.e. $\dot{\theta} = 2\pi \text{ rad s}^{-1}$ The radius of the drum $\approx 0.3 \text{m}$ Therefore the centripetal acceleration $= 0.3 \times (2\pi)^2 \approx 9.2 \text{ms}^{-1}$

(b)

$$100 \text{kmh}^{-1} = \frac{10^5}{3.6 \times 10^3} = \frac{10^2}{3.6} \text{ms}^{-1}$$

as $v = r\dot{\theta} \ r \approx 0.2 \text{m}$
 $\dot{\theta} = \frac{10^2}{3.5 \times 0.2} \approx 138.9 \text{rad s}^{-1}$

Centripetal acceleration $= r\dot{\theta}^2 = 0.2 \times 138.9^2 = 3658 \text{ms}^{-1}$

(c)

Angular velocity =
$$\frac{2\pi}{365 \times 24 \times 3600}$$

= 1.9×10^{-7} rad s⁻¹

Centripetal acceleration = $1.5 \times 10^{11} \times 1.9^2 \times 10^{-14} = 5.415 \times 10^{-3} \text{ms}^{-1}$

(d) Roundabout rotates \approx once per second. Therefore angular velocity $\approx 2\pi \approx 6$ rad s⁻¹

Radius \approx 1m. Therefore centripetal acceleration is $36 {\rm ms}^{-1}$