QUESTION

A contractor rents out a piece of heavy equipment for t hours and is paid $£ 50$ per hour. The equipment tends to overheat and if it overheats x times during the hiring period the contractor will have to pay a repair cost x^{2}. The number of times the equipment overheats in t hours can be assumed to have a poisson distribution with mean $2 t$. What value of t will maximize the expected profit of the contractor?

ANSWER

If the equipment is hired for time t and has x faults then $P=50 t-x^{2}$
$E(P)=50 t-E\left(X^{2}\right)$
$X \sim P(2 t)$ therefore

$$
\begin{aligned}
E(X) & =2 t \\
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =2 t-4 t^{2} \\
E\left(X^{2}\right) & =2 t+4 t^{2} \\
E(P) & =50 t-2 t-4 t^{2} \\
& =48 t-4 t^{2} \\
\frac{d E(P)}{d t} & =48-8 t=0 \text { when } t=6 \\
\frac{d^{2} E(P)}{2 t^{2}} & =-8<0 \text { hence maximum. }
\end{aligned}
$$

