Exam Question

Topic: Volume of Revolution

Find the volume of revolution obtained by rotating the region in the $x-y$ plane bounded by the lines $x=0, y=0, x=1$ and the curve $y=\mathrm{e}^{x}$ about (i) the line $y=3$, (ii) the line $x=-2$.

Give your answer in terms of e, and also as an approximation correct to 3 decimal places, using your calculator.

Solution

(i)

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left[3^{2}-\left(3-\mathrm{e}^{x}\right)^{2}\right] d x=\pi \int_{0}^{1}\left(6 \mathrm{e}^{x}-\mathrm{e}^{2 x}\right) d x \\
& =\pi\left[6 \mathrm{e}^{x}-\mathrm{e}^{2 x} / 2\right]_{0}^{1}=\pi\left[6 \mathrm{e}-\mathrm{e}^{2} / 2-6+1 / 2\right] \\
& =\frac{\pi}{2}\left[12 \mathrm{e}+\mathrm{e}^{2}-11\right]=22.353 \text { (3 d.p.) }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1}(x+2) \mathrm{e}^{x} d x=\left[2 \pi(x+2) \mathrm{e}^{x}\right]_{0}^{1}-\int_{0}^{1} 2 \pi \mathrm{e}^{x} d x \\
& =\left[2 \pi(x+2) \mathrm{e}^{x}\right]_{0}^{1}-\left[2 \pi \mathrm{e}^{x}\right]_{0}^{1}=2 \pi(2 \mathrm{e}-1)=27.867 \text { (3 d.p.) }
\end{aligned}
$$

