Question

In the proof that the group of Möbius transformations acts transitively on the set of circles in $\overline{\mathbf{C}}$, we use the fact that three distinct points in $\overline{\mathbf{C}}$ determine a circle in $\overline{\mathbf{C}}$.
Prove this fact in a single special case: determine the center and radius of the circle determined by $2+i, 3-i$, and $-7 i$.
Answer
The circle in \mathbf{C} determined by $2+i, 3-i,-7 i$ (first note that these 3 points do not lie on a line in \mathbf{C}, sine the line through $2+i$ and $3-i$ intersects the imaginary axis at $5 i \neq-7 i)$.

- The midpoint of the line segment through $2+i$ and $3-i$ is $\frac{1}{2}(2+i+$ $3-i)=\frac{5}{2}$ and its slope is $\frac{-1-1}{3-2}=-2$.
The perpendicular bisector then has equation $y-0=+\frac{1}{2}\left(x-\frac{5}{2}\right)$
$\Rightarrow y=\frac{1}{2} x-\frac{5}{4}$
- The midpoint of the line segment through $2+i$ and $-7 i$ is $\frac{1}{2}(2+i-7 i)=$ $1-3 i$ and its slope is $\frac{-7-1}{0-2}=4$.
The perpendicular bisector then has equation $y+3=-\frac{1}{4}(x-1)=$ $-\frac{1}{4} x+\frac{1}{4}$
$\Rightarrow \underline{y}=-\frac{1}{4} x-\frac{11}{4}$
These perpendiculars are both diameters of the desired circle and hence intersect at the center:

$$
\begin{aligned}
\frac{1}{2} x-\frac{5}{4} & =-\frac{1}{4} x-\frac{11}{4} \\
\frac{3}{4} x & =-\frac{6}{4}
\end{aligned}
$$

$x=-2$
$y=\frac{1}{2} x-\frac{5}{4}=-\frac{9}{4}$

So, the center of the circle is $-2-\frac{9}{4} i=a$.
Its radius is:

$$
\begin{aligned}
\left|-2-\frac{9}{4} i-(-7 i)\right| & =\left|-2+\frac{19}{4} i\right|=5.154 \\
\left|-2-\frac{9}{4} i-(2+i)\right| & =\left|-4-\frac{13}{4} i\right|=5.154 \\
\left|-2-\frac{9}{4} i-(3-i)\right| & =\left|-5-\frac{5}{4} i\right|=5.154
\end{aligned}
$$

