QUESTION

(a) Sketch the locus in the ω-plane of the point

$$
\omega=\frac{1-z}{z(1+z)(2+z)}
$$

as z moves down the imaginary axis with an indentation to the right to avoid 0 .
(b) Hence by using Nyquist theory find the values of $k>0$ for which the closed loop system with

$$
A(s)=\frac{1-s}{(1+s)(1+2 s)}, \quad B(s)=\frac{k}{s}
$$

is stable.
(c) Check your answer by looking for the poles of the transfer function $f=\frac{A}{(1+A B)}$ in the right half plane directly.

ANSWER

(a)

$$
w=\frac{1-z}{z(1+z)(2+z)}
$$

Parameterise $z=i y, \infty>y \geq \varepsilon$ and $-\varepsilon \geq y>-\infty$

$$
\begin{aligned}
w & =\frac{(1-i y)(1-i y)(2-i y)}{i y\left(1+y^{2}\right)\left(4+y^{2}\right)} \\
& =-i \frac{\left(1-y^{2}-2 i y\right)(2-i y)}{y\left(1+y^{2}\right)\left(4+y^{2}\right)} \\
& =\frac{-i\left(2-2 y^{2}-2 y^{2}-4 i y-i y+i y^{3}\right)}{y\left(1+y^{2}\right)\left(4+y^{2}\right)} \\
& =i \frac{4 y^{2}-2}{y\left(1+y^{2}\right)\left(4+y^{2}\right)}+\frac{y^{2}-5}{\left(1+y^{2}\right)\left(4+y^{2}\right)}
\end{aligned}
$$

As $|y| \rightarrow \infty, w \approx 4 y^{-3} i+y^{-2}$

At $y= \pm \sqrt{5}, \operatorname{Re} w=0, \operatorname{Im} w= \pm \frac{1}{3 \sqrt{5}}$
At $y= \pm \frac{1}{\sqrt{2}}, \operatorname{Im} w=0, \operatorname{Re} w=-\frac{2}{3} \operatorname{As}|y| \rightarrow 0, w \approx-\frac{i}{2} y^{-1}-\frac{5}{4}$
Parameterise $z=\varepsilon e^{i \theta}, \frac{\pi}{2} \geq \theta \geq-\frac{\pi}{2}$
$w \approx \frac{1}{2 z}=\frac{1}{2 \varepsilon} e^{-i \theta}$

(b) $A(s)=\frac{1-s}{(1+s)(1+2 s)} B(s)=\frac{k}{s} h(S)=A(s) B(s)=k(s)$ The loop system is stable $\Leftrightarrow h(s)$ does not wind around $-1 \Leftrightarrow w(s)$ does not wind around $-\frac{1}{k} \Leftrightarrow-\frac{1}{k}<-\frac{2}{3} \Leftrightarrow \frac{1}{k}>\frac{2}{3} \Leftrightarrow k<\frac{3}{2}$ (assuming $k>0$)
(c) The system is stable if the transfer function

$$
f(s)=\frac{A(s)}{1+A(s) B(s)}=\frac{s(1-s)}{s(1+s)(2+s)+(1-s) k}
$$

has two poles in the right half plane.
Poles of $f(s)$ are zeros of $s(1+s)(2+s)+(1-s) k$. Let us find the marginal value of k that gives $f(s)$ a pole just on the imaginary axis, i.e. $s=i y$.

We solve $i y(1+i y)(2+i y)+(1-i y) k=0$ for y and k.
i.e., $i y\left(1-y^{2}-k\right)+\left(k-3 y^{2}\right)=0$

The solution $y=0, k=0$ is not the one we are after. The other solution is $y^{2}=\frac{1}{2}, k=\frac{3}{2}$ as in $1(\mathrm{~b})$. One would still have to show that $\operatorname{Re}(s)>0$ for $k>\frac{3}{2}$.

