Question

Find the solutions of the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+(1-a) y=0
$$

which satify the conditions $y=0$ and $\frac{d y}{d x}=1$ when $x=0$ for three cases:
(i) a is a positive real number, so we can put $a=k^{2}$ with $k>0$;
(ii) a is a negative real number, so we can put $a=-p^{2}$ with $p>0$;
(iii) $a=0$

Answer

Auxiliary equation: $\lambda^{2}+2 \lambda+(1-a)=0$
Roots: $\lambda_{1}, \lambda_{2}=\frac{-2 \pm \sqrt{4-4(1-a)}}{2}=-1 \pm \sqrt{a}$
case (i)

$$
\begin{aligned}
0<a & =k^{2} \text { this gives two distinict real roots } \\
\lambda_{1}, \lambda_{2} & =-1 \pm k
\end{aligned}
$$

General Solution : $y=A e^{(k-1) x}+B e^{-(k+1) x}$

$$
\frac{d y}{d x}=(k-1) A e^{(k-1) x}-(k+1) B e^{-(k+1) x}
$$

Boundary conditions: $0=A+B$

$$
\begin{aligned}
1 & =(k-1) A-(k+1) B \\
\Rightarrow A & =\frac{1}{2 k} \text { and } B=-\frac{1}{[2 k}
\end{aligned}
$$

$$
\text { Particular solution : } y=\frac{e^{-x}}{k}\left\{\frac{e^{k x}-e^{-k x}}{2}\right\}
$$

$$
=\frac{e^{-x}}{k} \sinh (k x)
$$

case (ii)

$$
\begin{aligned}
& 0>a=-p^{2} \text { this gives a pair of complex conjugate roots } \\
& \lambda_{1}, \lambda_{2}=-1 \pm \sqrt{-p^{2}}
\end{aligned}
$$

General Solution : $y=e_{-x}(A \cos (p x)+B \sin (p x))$

$$
\frac{d y}{d x}=e^{-x}((p B-A) \cos (p x)-(p A+B) \sin p x)
$$

Boundary conditions: $0=A$

$$
\begin{aligned}
1 & =p B-A \\
\Rightarrow A & =0 \text { and } B=-\frac{1}{p}
\end{aligned}
$$

Particular solution : $y=\frac{e^{-x}}{p} \sin (p x)$
case (iii)

$$
\begin{aligned}
a & =0 \text { this gives two repeated real roots } \\
\lambda_{1}, \lambda_{2} & =-1 \\
\text { General Solution }: y & =(A+B x) e^{-x} \\
\frac{d y}{d x} & =(-A+B-B x) e^{-x} \\
\text { Boundary conditions :0} & =A \\
1 & =-A+B \\
\Rightarrow A & =0 \text { and } B=1 \\
\text { Particular solution : y } & =x e^{-x}
\end{aligned}
$$

